

Status of searches for light-sterile neutrinos at TeV energies in IceCube

Carlos Argüelles PPNT

Uppsala, Sweden, 2019

The standard neutrino oscillation picture

Except for the CP-phase, we have measured these quantities to the few-percent level

The pieces that do not fit our three-neutrino model

Introducing a sterile neutrino

✤ 3+1 -- a model with 3 active and one sterile flavor

• Can parameterize a 3+1 model with Δm_{41}^2 and θ_{24}^2

More pieces that do not fit our three-neutrino model

Oscillation Channel	Class	Experiments	Oscillation amplitude	
Electron Disappearance P(v _e →v _e)	Reactor Experiments	GALLEX (⊻) SAGE (⊻) {Global Reactors}	4 U _{e4} ² (1- U _{e4} ²)	
Muon Disappearance P(vµ→vµ)	Long Baseline Experiments	Not yet!	4 U _{µ4} ² (1- U _{µ4} ²)	
Electron Appearance P(vµ→v _e)	Short Baseline Experiments	LSND (⊻) MiniBooNe (⊻, v)	4 U _{µ4} U _{e4} ²	

The anomalies lie along a line

Global-fit solution

A Diaz et al. arXiv:1906.00045

Appearance and disappearance "preference regions" don't overlap!

See talk by M. Maltoni today for much more details.

See A. Diaz et al. arXiv:1906.00045 similar conclusions from other groups see Gariazzo et al. 1703.00860 and Dentler et al JHEP 1808 (2018)

3+1 model inconsistency opens up several questions

Do we understand all SM background/process well enough?

Are all the anomalies related? Or only some of them? Are LSND and MiniBooNE observing the same physics?

Since null results are not scrutinized as carefully as anomalous ones. Are all null results reliable?

Is there a significant signal of electron-neutrino disappearance in reactors?

If the anomalies are confirmed as new physics, in what theories are they embedded?

How about more complicated scenarios: 3+2, 3+3, 3+1+NSI (Liao et al Phys.Rev. D99 (2019) no.1, 015016), 3+1+Decay (see talk by Marjon Moulai tomorrow!)

Can we test the LSND-anomaly in a completely new way?

3+1 model inconsistency opens up several questions

Do we understand all SM background/process well enough?

Are all the anomalies related? Or only some of them? Are LSND and MiniBooNE observing the same physics?

Since null results are not scrutinized as carefully as anomalous ones. Are all null results reliable?

Is there a significant signal of electron-neutrino disappearance in reactors?

If the anomalies are confirmed as new physics, in what theories are they embedded?

How about more complicated scenarios: 3+2, 3+3, 3+1+NSI (Liao et al Phys.Rev. D99 (2019) no.1, 015016), 3+1+Decay (see talk by Marjon Moulai tomorrow!)

Can we test the LSND-anomaly in a completely new way?

Through-going v_{μ} energy distribution

Phys. Rev. Lett. 115, 081102 (2015)

IceCube observes a lot of atmospheric neutrinos!

All anomalies are from (anti)neutrinos traversing vacuum

For simplicity consider a 2-neutrino transition : $\nu_{\mu} \rightarrow \nu_{s}$

$$H = rac{1}{2} U^\dagger \begin{pmatrix} 0 & 0 \\ 0 & \Delta m_{41}^2 \end{pmatrix} U$$

IceCube atmospheric neutrinos traverse large regions of matter.

$$H = \frac{1}{2} U^{\dagger} \begin{pmatrix} 0 & 0 \\ 0 & \Delta m_{41}^2 \end{pmatrix} U \mp \frac{G_F}{\sqrt{2}} \begin{pmatrix} N_{\text{nuc}} & 0 \\ 0 & 0 \end{pmatrix}$$

IceCube has a novel way of addressing muon-neutrino disapperance!

Effects of Matter Effects

Where is the resonance effect?

Phys. Rev. Lett. 115, 081102 (2015)

Position of resonance maps onto sterile parameter space

 10^{0}

Position of resonance maps onto sterile parameter space

We measure two things:

- cos(theta) length
- energy

We extract two parameters:

- squared mass difference
- mixing angle

We searched for it with one year of data!

l'liT 🏶

We analyzed one year of IceCube data ~ 20 000 events.

No evidence for a "dip" on the event distribution.

PHYSICAL REVIEW LETTERS									
Highligh	its Re	ecent	Accepted	Collections	Authors	Referees	Search	Press	
Feat	ured in Phy	vsics	Editors' Sugg	estion					
Sea	arche	s for	Sterile N	Veutrinos	with the	IceCub	e Dete	ctor	
M.G. Phys.	Aartsen Rev. Let	<i>et al.</i> (Ice t. 117 , 07	eCube Collab 1801 – Publis	ooration) shed 8 August 2	2016				
Phys	SICS See	Viewpoin	t: Hunting the S	Sterile Neutrino					
$\Delta m_{41}^2/{ m eV}^2$	10 ² 10 ¹ 10 ⁰ 10 ⁻¹		After 10 ⁻	· IceCub	e! $0^{2} 2\theta_{ue}$	10 ⁻¹		0°	

G.Collin, CA, J. Conrad, M. Shaevitz Phys. Rev. Lett. 117, 221801 See also Dentler et al JHEP 1808 (2018)

19

8-year search in IceCube Matter-Enhanced Oscillations With Steriles (MEOWS)

- Optimized event selection
- Improved systematics treatment

Need to work on systematic treatment as statistical error bars shrink

Comparison between one to eight year treatment

Atmospheric flux								
ν flux template	discrete (7)							
$\nu \ / \ \overline{\nu} \ ratio$	continuous	0.025						
π / K ratio	$\operatorname{continuous}$	0.1						
Normalization	$\operatorname{continuous}$	none^1						
Cosmic ray spectral index	$\operatorname{continuous}$	0.05						
Atmospheric temperature	$\operatorname{continuous}$	model tuned						
Detector and ice model								
DOM efficiency	continuous							
Ice properties	discrete (4)							
Hole ice effect on angular response	discrete (2)							
Neutrino propagation and interaction								
DIS cross section	discrete (6)							
Earth density	discrete (9)							

PHYSICAL REVIEW LETTERS									
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press		
Featured	I in Physics	Editors' Sugge	estion						
Searc	Searches for Sterile Neutrinos with the IceCube Detector								
M. G. Aa Phys. Re	M. G. Aartsen <i>et al.</i> (IceCube Collaboration) Phys. Rev. Lett. 117 , 071801 – Published 8 August 2016								
Physic	PhySICS See Viewpoint: Hunting the Sterile Neutrino								

lli T 🎕

IceCube Preliminary

Parameter	Central Value	Prior	Constraints						
Physics Mixing Parameters									
Δm_{41}^2	none	no prior	$[0.01 \text{ eV}^2, 100 \text{ eV}^2]$						
$\sin^2(\theta_{24})$	none	no prior	$[10^{-2.6}, 1.0]$						
$\sin^2(\theta_{34})$	none	no prior	$[10^{-3.1}, 1.0]$						
Detector parameters									
DOM efficiency	0.97	0.97 ± 0.1	$[0.94, \ 1.03]$						
Bulk Ice Gradient 0	0.0	$0 \pm 1.0^{*}$	NA						
Bulk Ice Gradient 1	0.0	$0 \pm 1.0^{*}$	NA						
Forward Hole Ice (p_2)	-1.0	-1.0 ± 10.0	[-5, 3]						
Con	ventional Flux	parameters	30 78						
Normalization $(\Phi_{\text{conv.}})$	1.0	1.0 ± 0.4	NA						
Spectral shift $(\Delta \gamma_{\text{conv.}})$	0.00	0.00 ± 0.03	NA						
Atm. Density	0.0	0.0 ± 1.0	NA						
Barr WM	0.0	0.0 ± 0.40	[-0.5, 0.5]						
Barr WP	0.0	0.0 ± 0.40	[-0.5, 0.5]						
Barr YM	0.0	0.0 ± 0.30	[-0.5, 0.5]						
Barr YP	0.0	0.0 ± 0.30	[-0.5, 0.5]						
Barr ZM	0.0	0.0 ± 0.12	[-0.25, 0.5]						
Barr ZP	0.0	0.0 ± 0.12	[-0.2, 0.5]						
Astr	ophysical Flux	parameters							
Normalization $(\Phi_{astro.})$	0.787	$0.0 \pm 0.36^{*}$	NA						
Spectral shift $(\Delta \gamma_{\rm astro.})$	0	$0.0 \pm 0.36^{*}$	NA						
Cross sections									
Cross section $\sigma_{\nu_{\mu}}$	1.0	1.0 ± 0.03	[0.5, 1.5]						
Cross section $\sigma_{\overline{\nu}_{\mu}}$	1.0	1.0 ± 0.075	[0.5, 1.5]						
Kaon Energy Loss	0.0	0.0 ± 1.0	NA						

22

Improved treatment of atmospheric flux uncertainties

Before:

Atmospheric flux							
ν flux template	discrete (7)						
$\nu \ / \ \overline{\nu} \ ratio$	continuous	0.025					
π / K ratio	$\operatorname{continuous}$	0.1					
Normalization	continuous	none^1					
Cosmic ray spectral index	continuous	0.05					
Atmospheric temperature	$\operatorname{continuous}$	model tuned					

- We computed or obtained from the literature calculations of the neutrino flux of neutrinos from pions and kaons.
- We rescaled the neutrino fluxes from pion and kaons.
- We tested all the models and pick the best one at a given sterile parameter point.

Improved treatment of atmospheric flux uncertainties

G. D. Barr, S. Robbins, T. K. Gaisser, and T. Stanev, Phys. Rev. D 74 (Nov, 2006) 094009

Improved treatment of atmospheric flux uncertainties

Fedynitch et al. arXiv:1806.04140 Fedynitch PANE2018.

Taking into account high-energy non-conventional components

A. Bhattacharya et al. arXiv:1607.00193

- Contributions from neutrinos from charmed meson decays are expected to be very small.
- Studied its impact in the one-year analysis and found to be negligable.
- Miranda et al have revisited its impact and found it small and confined to the high-mass region.

Taking into account high-energy non-conventional components

- High-energy astrophysical neutrinos observed by IceCube are known to be much larger than the prompt flux.
- We include an astrophysical neutrino flux as an isotropic single power-law in energy.

$\frac{d\Phi_{6\nu}}{dE} = \Phi_{astro} \left(\frac{E_{\nu}}{100 \text{TeV}}\right)^{-\gamma_{astro}} \cdot 10^{-18} \left[\text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\right]$

A. Schneider for the IceCube Collaboration arXiv:1907.11266

arXiv.org > hep-ex > arXiv:1909.01530

High Energy Physics - Experiment

Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube

High Energy Physics - Experiment

Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube

arXiv.org > hep-ex > arXiv:1909.01530

High Energy Physics - Experiment

Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube

Prediction of the effect of changing the ice using the SnowStorm

Uncertainties in the ice properties from flasher data

Analysis implementations can be done in two ways:

- We can compute the covariance matrix of the ice effects.
- Or we can use directly the effect of the most important ice variants.

Improved statistical treatment to account for Monte Carlo statistical uncertainties

32

Our sensitivities!

Other interesting parameter space

- Blennow et al. performed a fit of the one-year IceCube data and found small preference against the null hypothesis when considering a heavy sterile and non-zero U_{tau4}.
 This motivates studying
- This motivates studying high-mass-square difference parameter space. In this case signal is only zenith dependent.

$$P_{\mu\mu} \simeq 1 - V_{\rm NC}^2 |U_{\tau4}|^2 |U_{\mu4}|^2 L^2$$

 $\mathbf{U} \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \\ U_{s1} & U_{s2} & U_{s3} \\ \end{bmatrix} \begin{pmatrix} U_{e4} \\ U_{\mu 4} \\ U_{\mu 4} \\ U_{\mu 4} \\ U_{\mu 4} \\ U_{\tau 4} \\ U$

Money plots!

Summary and outlook

- The LSND and MiniBooNE anomalies remain to have a consistent explanation with in light of the global data.
- IceCube brings new capabilities to search for sterile neutrinos via matter effects.
- We have updated our 1-year MEOWS analysis to 8 years. Statistics increased by a factor of 15!
- Improved systematic treatment has been developed.
- We hope to deliver exciting news soon!

Thank you! Gracias!

Meson interaction energy losses

To estimate the cross section from Kaon-Air we use a scaling of sigma ~ A^{2} and perform error propagation. Resulting error of ~ 5%.

Uncertainties in Earth absorption due to neutrino cross sections

For our prior, we are using +/-7.5% for the antineutrino cross section, and +/-3.0% for the neutrino cross section.

The systematic is implemented via a spline. The splined region goes from -50% to 150% in both v ad anti-v. We have 30 spline support points.

	$E_{ u}[\text{GeV}]$	$\sigma_{ m CC}[m pb]$	up	down (w/o mem. 9)	down (w/ mem. 9)	$\sigma_{ m NC}[m pb]$	up	down (w/o mem. 9	down 9) (w/ mem. 9)
INCULLINO	$ 10000 \\ 20000 \\ 50000 \\ 100000 $	47. 77. 140. 210.	2.0 % 1.8 % 1.5 % 1.4 %	-1.4 % -1.3 % -1.2 % -1.2 %	-1.4 % -1.4 % -1.2 % -1.2 %	15. 26. 49. 75.	1.8 % 1.6 % 1.3 % 1.2 %	-1.2 % -1.1 % -1.0 % -1.0 %	-1.2 % -1.1 % -1.1 % -1.0 %
	10000 20000 50000 100000	31. 55. 110. 180.	5.1 % 3.8 % 2.5 % 1.9 %	-3.0 % -2.3 % -1.7 % -1.4 %	-3.0 % -2.3 % -1.7 % -1.4 %	11. 19. 39. 64.	4.6 % 3.6 % 2.4 % 1.7 %	-2.7 % -2.1 % -1.5 % -1.2 %	-2.7 % -2.1 % -1.5 % -1.2 %

Effect on interaction

https://arxiv.org/abs/1106.3723

