Standard Neutrino Oscillations with IceCube DeepCore

Alexander Trettin on behalf of the IceCube Collaboration

PPNT Workshop 2019, Uppsala

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

IceCube Neutrino Observatory

- > denser instrumentation
- > modules with higher efficiency
- > neutrino detection threshold < 10 GeV

Atmospheric neutrino oscillations

- > Cosmic rays interact in atmosphere
- > below 100 GeV mostly ν_{μ} from pion decay
- > Oscillate into ν_{τ}
- > zenith angle and energy $\Longrightarrow \frac{L}{E}$

Atmospheric neutrino oscillations

Atmospheric neutrino oscillations

Signatures in DeepCore

DeepCore analysis

> to get nominal expectation in each bin:

> simulate neutrino interactions (GENIE), muons and noise

> weigh by flux (Honda) + cross-section

> modified χ^2 - fit with uncertainty on MC expectation and penalty on priors

$$\chi^2 = \sum_{i \in \{\text{bins}\}} \frac{\left(N_i^{\exp} - N_i^{\text{obs}}\right)^2}{N_i^{\exp} + \left(\sigma_i^{\exp}\right)^2} + \sum_{j \in \{\text{syst}\}} \frac{\left(s_j - \hat{s}_j\right)^2}{\sigma_{s_j}^2}$$

Systematic uncertainties

- > sources of systematic uncertainty:
 - > detector
 - > neutrino flux
 - > cross-section
 - > muons
- > detector systematics largest contribution to uncertainty ($\approx 40\%$)
- > need re-simulation of entire MC set with varied parameters
- > how to calculate expected change in bin content for arbitrary combination of parameters?

Hyperplane fits

> fit linear model to ratio of bin count to nominal value: $\frac{N_{i,\text{variation}}^{\text{exp}}}{N^{\text{exp}}} = f(p_1, \dots, p_N)$ $N_{i,\text{nominal}}^{\exp}$

> in 1D: f(p) = b + mp, with offset b and slope *m*

> in ND:
$$f(p_1, ..., p_N) = b + \sum_{n=1}^N m_n p_n$$

> allows variation of more than one parameter at a time (off-grid point)

10

Recent Results from DeepCore Data

- > ν_{μ} disappearance study 2017 (IC 2017), DOI: 10.1103/PhysRevLett.120.071801
- > ν_{τ} appearance study 2019 (Analysis \mathscr{A}), DOI: 10.1103/PhysRevD.99.032007
- both with three years of data, but different selection, systematics, reconstruction

> IC 2017: 40902 observed events

> Analysis *A*: 62112 observed events

lines correspond to 90% CL contours

)				4	F				ć
				1					
									-
					1	8	1		-
					-				-
	-								-

Recent Results from DeepCore Data

- > ν_{μ} disappearance study 2017 (IC 2017), DOI: 10.1103/PhysRevLett.120.071801
- > ν_{τ} appearance study 2019 (Analysis \mathscr{A}), DOI: 10.1103/PhysRevD.99.032007
- both with three years of data, but different selection, systematics, reconstruction

> IC 2017: 40902 observed events

> Analysis *A*: 62112 observed events

New DeepCore Developments

- > re-calibrated detector from raw data
- > new charge calibration significantly improves data/MC agreement
- > are developing new event selection
 - > unify best practices
 - > variables less charge-dependent
 - > common basis for DeepCore studies

Distribution at last pre-reconstruction selection level

New DeepCore event selection

Levels of event selection before event reconstruction

New DeepCore event selection

Verification Sample

- simple and fast reconstruction
- needs additional cleaning, lowering efficiency
- 13 000 events/year expected
- 2.8% muon contamination

New DeepCore event selection

High-stats analysis sample

- new, highly efficient reconstruction method
- 100 000 events/year including
 ≈ 30% muons
- final muon rejection cut being developed
 - hard cut: expect ~40 000 events/ year with ≈ 1% muons

- > previously: "forward" tables starting from interaction point
- > novel approach: backwards ("retro") tables
 - > act as if sensor was light source
 - > trace photons originating from sensor
 - > store for each spacetime bin photon content and average direction
- > improved speed and accuracy compared to previous reconstruction methods
- > more flexible in the event hypotheses that can be modeled

github.com/philippeller/retro

> "previous reco" = reconstruction used in Analysis \mathscr{A}

ν

> "previous reco" = reconstruction used in Analysis \mathscr{A} $\nu_{\mu} \bar{\nu}_{\mu}$

ν

V

Verification sample reconstruction

Low-efficiency reconstruction for verification

Vertex and Direction

- > χ^2 fit w.r.t. geometric time
- > needs hit cleaning to remove scattered light
- > several fits per second
- > able to reconstruct $\approx 40\%$ of all events from common selection (including background)
- > reconstructs $\approx 45\%$ of neutrino events

Low-efficiency reconstruction for verification

Energy

- > uses all light including scattered photons
- > only hit/no-hit probability to reduce charge dependence
- > light expectation from interpolated tables
- > requires successful vertex and direction reconstruction
- > ca. 5 sec per fit

Verification sample

- > low-statistics sample used to verify event selection and data/MC agreement
- > final level cuts:
 - $> \cos(\theta_{\rm reco}) < 0.1$
 - > cut on fit quality
 - > co-incident muon rejection
 - > ...etc.
- $> \approx 13\,000$ events per year with less than 3% muon contamination
 - comparable to IC 2017, but with lower muon >contamination (2.8% vs. 4.6%)
- > good agreement between data and simulation even before any fit

Verification sample

- > New event selection for future DeepCore studies in final stages of development
- > developing high-statistics sample with better reconstruction methods than any previous IceCube study
- > low-statistics sample developed for verification of event selection
- > neutrino oscillation studies with significantly improved sensitivity upcoming

Backup

Nuisance parameters

		Anal	ysis \mathcal{A}	Analysis \mathcal{B}		
Parameter	Prior	(CC + NC)	Best fit (CC)	Best fit $(CC + NC)$	Best fit (CC)	
Neutrino flux and cross section	on:					
ν_e/ν_μ Ratio	1.0 ± 0.05	1.03	1.03	1.03	1.03	
ν_e Up/Hor. Flux ratio (σ)	0.0 ± 1.0	-0.19	-0.18	-0.25	-0.24	
$\nu/\bar{\nu}$ Ratio (σ)	0.0 ± 1.0	-0.42	-0.33	0.01	0.04	
$\Delta \gamma_{\nu}$ (Spectral index)	0.0 ± 0.1	0.03	0.03	-0.05	-0.04	
Effective Livetime (years)	• • •	2.21	2.24	2.45	2.46	
M_A^{CCQE} (Quasielastic) (GeV)	$0.99\substack{+0.248\\-0.149}$	1.05	1.05	0.88	0.88	
M_A^{res} (Resonance) (GeV)	1.12 ± 0.22	1.00	0.99	0.85	0.85	
NC Normalization	1.0 ± 0.2	1.05	1.06	1.25	1.26	
Oscillation:						
θ_{13} (°)	8.5 ± 0.21	• • •	• • •	8.5	8.5	
θ_{23} (°)	•••	49.8	50.2	46.1	45.9	
$\Delta m_{32}^2 \ (10^{-3} \ {\rm eV}^2)$	• • •	2.53	2.56	2.38	2.34	
Detector:						
Optical Eff., Overall (%)	100 ± 10	98.4	98.4	105	104	
Optical Eff., Lateral (σ)	0.0 ± 1.0	0.49	0.48	-0.25	-0.27	
Optical Eff., Head-on (a.u.)	•••	-0.63	-0.64	-1.15	-1.22	
Local ice model	•••	• • •	• • •	0.02	0.07	
Bulk ice, scattering (%)	100.0 ± 10	103.0	102.8	97.4	97.3	
Bulk ice, absorption (%)	100.0 ± 10	101.5	101.7	102.1	101.9	
Atmospheric muons:						
Atm. μ fraction (%)	• • •	8.1	8.0	4.6	4.6	
$\Delta \gamma_{\mu} \ (\mu \text{ Spectral index}, \sigma)$	0.0 ± 1.0	0.15	0.15	• • •	• • •	
Coincident $\nu + \mu$ fraction	0.0 + 0.1	0.01	0.01	• • •	• • •	
Measurement:						
ν_{τ} Normalization	• • •	0.73	0.57	0.59	0.43	

Impact of systematics

CC) NC+CC)	Categor Categor	ry (CC) ry (NC+CC)
• Oscil	lation	
ν F	lux	
Cross	Section	
+ Dete	ector	
Atmos	oheric µ	
0% 20% Impact on	30% 1σ Range	40% 50%

shown: head-on optical efficiency +1