Neutron Echo in IceCube?

... a potential tool to tag hadronic showers and v interaction at high energies

Major Stimulus: Shirley Weishi Li, Mauricio Bustamante, John F. Beacom, Phys. Rev. Lett. 122, 151101 (2019)

deuteron

n

p hydrogen

Lutz Köpke / Anna Steuer JGU Mainz PPNT19 workshop, Uppsala, Oct. 8, 2019

Motivation: hadronic component is indicator of reaction

Motivation: hadronic component is indicator of reaction

Motivation: hadronic component is indicator of reaction

Fraction detected energy in reaction	electromagnetic	hadronic
boosted dark matter on e ⁻	100%·γ _χ	-
boosted dark matter recoil	-	100%·γ _χ
neutral current	-	29%
v_e charged current	71%	29%
v_{τ} charged current	9.5%	69%
Glashow resonance	12%	82%

1000 TeV

0.8

1.0

Example of exotic interaction: boosted dark matter

- Heavy dark matter particle φ decays into lighter dark matter particle X (with SM interactions)
- Since $m_{\phi} >> m_{\chi}$, X highly relativistic with up to PeV energy

IceCube acts as gargantuan recoil dark matter detector with monoenergetic hadronic or electromagnetic signature

Hadronic interactions: lots of neutrons!

Multi-MeV neutrons evaporate from highly excited nucleons

- 99.9892 % Ice:
 99.7 % H₂O
 0.03 % HDO
 0.2 % H₂¹⁸O
- 0.0108 % Air

Hadronic interactions: lots of neutrons!

Scattering and capture cross sections of neutrons

cross sections

differences water / ice, thermal velocity

Summary neutrons: from evaporation to capture

GEANT slow: use photon count parametrization

GEANT calculation extremely time consuming \rightarrow parametrize #prompt photons and #delayed photons

Cherenkov photons from event

Cherenkov photons from neutron capture

Before detection: capture time and delayed photons

Exponential time distribution with τ≈217 µs in ice is signature for delayed light from neutron capture on hydrogen

Expected time distribution (before detection)

delayed #photon probability for NC, ν_e and ν_τ

Before detection: capture time and delayed photons

Exponential time distribution with τ≈217 µs in ice is signature for delayed light from neutron capture on hydrogen

Expected time distribution (before detection)

delayed #photon probability for NC, ν_{e} and ν_{τ}

Specific example: tau neutrino interactions

- energy loss from neutrinos (~ 25%)
- electromagnetic showers from $\tau \rightarrow e\nu\nu$ ($\tau \rightarrow \mu\nu\nu$ events rejected in sample)
- 1, 3 and 5 prong events responsible for hadronic fractions

A pity: Large uncertainties in neutron yield and capture

- Decreasing with energy because electromagnetic component is rising with energy
- Differences between FLUKA and Geant4 and between model assumptions made in Geant4

systematic effect	uncertainty
hadronic and nuclear physics	45%
photon count parametrization	20%
c_{dt} : calculation method	20%
c_{dt} : event misreconstruction	7%
averaged PE: energy resolution, including other systematic uncertainties	15%
combined uncertainty	$\pm~56~\%$
	1

total uncertainty of 56% dominated by uncertainties in the neutron yield

Cross check: Studies by others (in scintillator/rock)

- Few measurements for water (Kamiokande)
- Neutrons produced by cosmic ray muons in liquid scintillator experiments

- Super-Kamiokande measured neutron capture time from muons and with a AmBe source Astropart. Phys. 31, 320 (2009) and 60, 41 (2015)
- $\tau_{capture}$ =(203.7±2.8) µs consistent with expectation
- Data typically higher than Fluka and GEANT predict
- Predictions depend on settings
- **Borexino**: measurement ~ GEANT > FLUKA
- others: measurement >~ Fluka > GEANT

Uncertainties 20% – 50%, depending on study

IceCube detector: what would one see/miss?

- Sparse IceCube/DeepCore detectors: ~ 10⁻⁶ probability to see single photon
 → need 100 TeV contained showers to see clear delayed signal
- Save all hits in the detector within ±0.5 s of HESE event with > 1500 PE
 → automatic satellite transfer/processing from Feb 2016
- readout is deadtime free for prompt event but not for delayed signals \rightarrow affects delayed signal up to 150 µs (~40% loss, energy dependent)

Neutron echo: Likelihood extraction of delayed signal

Take position and time information into account in likelihood:

Simulation Results: based on 13 random HESE events

Assumptions: 13 randomly chosen MC showers, corresponding to the number of events seen in data by Dec 18 (56 % systematic uncertainty), SM cross section ratios are assumed in right plot

Simulation results: Projected distributions

Wilks theorem assumed, i.e. a χ^2 with one degree of freedom determines the 90% confidence level

Just 13 events would allow one to rule out 100% neutral current or 100% purely electromagnetic interactions

Future: Expectations for three years of GEN-2 data

Assumptions: 84 showers in 3 years with 4 x higher event rate and 2 x higher Cherenkov detection efficiency no DAQ deadtime (56 % systematic uncertainty is minor effect for large datasets)

Future: Expectations for GEN-2 (+ IceCube) data

Future: Expectations for GEN-2 (+ IceCube) data

Data: Looking at 13 HESE events taken after 2016

Clear delayed signal seen above noise level !

- Rate within 56% uncertainty of neutron expectation
- Expected effects of deadtime seen
- Noise level reasonably low (8 DOMs/event selected)
- Strong contribution by one event in DeepCore

26.6.2017: Event with largest observed afterglow

26.6.2017: Event with largest observed afterglow

Artifact: Lab and in-situ measurements with LEDs

Unexpected delayed signal from PMT seen at 40% of expected signal:

Seen before: similar effect with different PMT!

R.V. Poleshchuk, B.K. Lubsandorzhiev, R.V. Vasiliev: NIMA: NIMA 695 (2012)

Specific problem with large diameter PMTs? Cathode effect?

New: also confirmed by Hamamatsu

Characteristics: properties of delayed pulses

- Rate ~ 40% of neutron capture expectation, time distribution similar but not the same
- Rate and time depend on PMT, cathode and temperature but not voltage, glass luminescence or activation
- Approximately linear dependence on prompt signal

Is there any chance to distinguish delayed pulses from neutron echo?

Yes:time distribution slightly differentdifferent geometric pattern (Cherenkov / 4π)

- Neutron tagging has great potential for > 100 TeV contained cascades
 - Discover exotic interactions resulting in electron or hadron recoil
 - Tag τ neutrinos, Glashow resonance events or neutral current events ...
- Muon tagging much more difficult (delayed light, afterpulses)
- Large systematic uncertainty on neutrons can be treated as nuisance parameter
- Need low noise PMTs without PMT related delayed signal around 100 μ s!

Background: Anna Steuer, PhD thesis, JGU Mainz (2018); A. Steuer, L. Köpke, PoS ICRC2017, 1008 (2017)

Theory: Echo Technique to Distinguish Flavors of Astrophysical Neutrinos Shirley Weishi Li, Mauricio Bustamante, John F. Beacom, Phys. Rev. Lett. 122, 151101 (2019); arXiv:1606.06290

Additional material

Bayesian interpretation

Following method decribed in Appendix of S. Li, M. Bustamente and J.F. Beacom, arXiv:1606.06290

Example showing dependence on assumed energy dependence on flux

Example for deadtime effect (Monte Carlo)

IceCube electronics introduce complex deadtime effect for times > a few microseconds (the effects do not influence the analysis of standard IceCube events!)

Example for a 700 TeV shower close to string

Linearity & temperature dependence of delayed pulses

Laboratory results at room temperature and in freezer

- Linear dependence on light level
- temperature / photo cathode / individual PMT dependent
- no dependence on pressure sphere observed

PMT effects are not easy to understand ...