Magnetic Monopoles in IceCube

IceCube Searches for Magnetic Monopoles - Covering a Large β Range

- (

A. Burgman

Division for High Energy Physics, Uppsala University

> PPNT19 - Uppsala 2019-10-08

Magnetic Monopole Basics

Free magnetic north or south pole

▷ Dirac, 1931
▷ t' Hooft, 1974
Polyakov, 1974

Charge, g_{MM} $\triangleright g_{MM} = n \frac{1}{2\alpha} q_e$ $\triangleright n = 1 \Rightarrow g_{MM} \approx 68.5 q_e$ \triangleright Dirac charge, g_D

 $Mass, m_{MM}$ $\triangleright m_{MM} \in [10^4; 10^{17}] \, \text{GeV}$

Kinetic Energy, $E_{kin,MM}$ $\triangleright E_{kin,MM} \lesssim 10^{15} \text{ GeV}$

Searches

Collider production ▷ Lower mass monopoles Primordial flux

▶ Higher mass monopoles

IceCube Basics

Detector

5160 DOMs (*Digital Optical Modules*) detecting light produced by in-ice particles

Event types

- \triangleright Cascades $(v_{e,\tau})$
- \triangleright Tracks (v_{μ}, μ)
 - Contained
 - Semi-contained
 - ▷ Through-going

Non-relativistic

 $\beta \lesssim 0.01$

 Particle cascades from induced proton decay in medium

A. Burgman

Monopole light yield Direct Cherenkov light Indirect Cherenkov light Luminescence with yield 1.0 y/MeV Proton decay with cross section $\sigma_0 \beta = 10^{-27} \text{ cm}^2$ 107 Siret 10^{6} 10⁵ Light yield / $\gamma/{\rm cm}$ luminescence 10⁴ 10³ 10² Muon 10¹ direct herenkow liaht 10⁰ 10-4 10^{-3} 10^{-2} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Low relativistic

 $0.01 \lesssim \beta \lesssim 0.5$

Luminescence light from deexcitation (post excitation) of medium

Velocity / c

$0.3 \gtrsim p \gtrsim 0.73$	0.5	\lesssim	β	\lesssim	0.75
------------------------------	-----	------------	---	------------	------

Indirect
Cherenkov light
from ionization of
medium

Relativistic

Velocity / c

Monopole light yield Direct Cherenkov light Indirect Cherenkov light Luminescence with yield 1.0 y/MeV Proton decay with cross section $\sigma_0 \beta = 10^{-27} \text{ cm}^2$ 107 Siret 10^{6} 10⁵ Light yield / $\gamma/{\rm cm}$ luminescence 10⁴ 10³ 10² Muon 10¹ direct erenkow liaht 10⁰ 10-4 10^{-3} 10^{-2} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ultra-relativistic

 $\begin{array}{l} 0.999\,95 \lesssim \beta \\ 100 \lesssim \gamma \end{array}$

 Stochastic nuclear interactions, direct Cherenkov light

A. Burgman

Non-Relativistic Monopoles

β Range Light Production Event Characteristics 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- 1. Dedicated trigger for subrelativistic track-like topologies (ms scale)
 - Includes cleaning of likely muon tracks (hits close in time)
- 2. BDT to remove noise hits and sub-threshold muons
 - Dedicated variables to check for particle cascades along the monopole track

Main Removing non-related hits from event Challenge

Non-Relativistic Monopoles

β Range Light Production Event Characteristics 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- 1. Dedicated trigger for subrelativistic track-like topologies (ms scale)
 - Includes cleaning of likely muon tracks (hits close in time)
- 2. BDT to remove noise hits and sub-threshold muons
 - Dedicated variables to check for particle cascades along the monopole track

MainRemoving non-related hits from eventChallenge \rightarrow Coincident muon tracks

A. Burgman

Non-Relativistic Monopoles

β Range Light Production Event Characteristics 10⁻³ – 10⁻² Induced proton decay Extremely slow, dim track

Analysis Steps

- 1. Dedicated trigger for subrelativistic track-like topologies (ms scale)
 - Includes cleaning of likely muon tracks (hits close in time)
- 2. BDT to remove noise hits and sub-threshold muons
 - Dedicated variables to check for particle cascades along the monopole track

Main Challenge

Removing non-related hits from event \rightarrow Coincident muon tracks \rightarrow PMT noise etc.

A. Burgman

A Selection Variable – Relative Angle

▷ A **slow track** is a collection of triplets

- A triplet consists of three hit-pairs
 - close in time (not too)
 - large internal angle
 - small internal speed differences

Relative Angle = average(| direction (triplet) -direction (full event)

In-progress Sensitivity over σ_{cat}

Monopole flux sensitivity over proton decay catalysis cross-section

- 10-100 times lower than previous limits
- Extends to 3 times lower cross-section

Low Relativistic Monopoles

β Range Light Production Event Characteristics

Analysis Steps

- Quality cuts (central track, through-going)
- 2. BDT pull validation
 - 32 variables
 - 200 BDTs
 - 10 % of data for each BDT

0.1 – 0.5 Luminescence light Slow, smooth, fairly dim track

A BDT variable: Divide track in the middle, compare

- reco speed of first half with reco speed of second half
 - identifies events with coincident muon tracks

BDT score distribution

BDT Pull Validation "Collective result of many BDTs"

- ▷ Train 200 BDTs, each using 10 % of data (random selection)
 - Each event is used for training on average 20 times
- ▷ Yield each event on average 180 (= 200 20) scores
 - ⇒ Smoother score distributions
 - ⇒ Better handle on low-statistics tail

Magnetic Monopoles in IceCube

Clear separation

between signal

and background

samples

0.00

00

Monopole Flux Landscape

Mildly Relativistic Monopoles

β Range Light Production Event Characteristics 0.5 – 0.75 Indirect Cherenkov light (delta-electrons) Moderately fast, bright, smooth track

Analysis Steps

- Quality cuts (e.g. number of hit strings, number of hit DOMs)
- 2. BG reduction cuts (e.g. track length, hit time distribution, direction)
- 3. BDT for final event classification, pull validation for remaining background estimation

A Selection Variable – Separation Distance

- → Divide track in quartiles in time
- → Find CoG of first and last quartile

cut d_{Sep}>350 m

muon

(neutrino)

→ Calculate distance between first and last CoG, take sign from z-difference

'+' means up-going

Identifies short and down-going tracks

BDT score at final level

Clear signal/background separation

cut at BDT score 0.47

S3 background events expected after all cuts

3 events observed in final level data

 Correspond to known background event signatures

Relativistic Monopoles

β Range Light Production Event Characteristics

 β Range 0.75 – 0.995 roduction Direct Cherenkov light Extremely bright, smooth track

Analysis Steps

- 1. Cuts from EHE analysis
 - IceCube search for high energy v
 - \Rightarrow Sample with...
 - Bright events
 - Low atm. event rate
- 2. Dedicated BDT to remove remaining neutrino events

Main Rare ultra high energy Background astrophysical neutrinos

A. Burgman

Magnetic Monopoles in IceCube

. . . .

A Selection Variable – Relative hit-CoG offset

- → Find CoG of hits
- → Find geometric center of track, geometric track-length

→ Calculate distance between center-of-track and CoG relative to track-length

Identifies events with large concentrations of light

BDT score at final level

Cut decided by optimal Model Rejection Factor

cut at BDT score 0.028

Background expectation reduced to <0.2 events per 6 yr of data

Signal expectation kept at ~24 events per 6 yr of data

Summary

Magnetic Monopoles

- ▷ Free magnetic pole
- So far non-observed
- Wide allowed speed range of relic flux

IceCube Searches

Non-relativistic		$0.001 \le \beta \le 0.01$	\rightarrow	sensitivity
	⊳	Looooong events, de	edica	ted triggers
Low relativistic		$0.10 \leq \beta \leq 0.50$	\rightarrow	sensitivity
	⊳	Dim and delayed ev	ents,	many-BDT pull validation
Mildly relativistic	2	$0.50 \leq \beta \leq 0.75$	\rightarrow	upper limit
	⊳	Smooth tracks, man	iy-B[DT pull validation
Relativistic		$0.75 \leq \beta \leq 0.995$	\rightarrow	sensitivity
	⊳	Extremely bright ev	ents,	UHE neutrino background

Concluding Remarks

Thank you