

New physics searches at ATLAS and CMS

Deborah Pinna

on behalf of the ATLAS and CMS Collaborations

PPNT19

Uppsala, 7-9 October

ATLAS, CMS and Run-2 data taking

- LHC accelerator designed to collide protons
- ATLAS and CMS multipurpose detector
 - ***** *particle identification*, energy and momenta measurements
 - * trigger system: select events interesting for physics analysis

- Run-2: data taking period 2015-2018 at 13 TeV
- Excellent LHC (and <u>ATLAS</u> and <u>CMS</u>) performance:
 *~140 fb⁻¹ pp collision data good for analysis during Run 2
 * more than 8.5 million Higgs boson produced
- ▶ Mean number of additional pp interactions per crossing ~34
 - increasingly dense collision environment

Rich new physics program at ATLAS and CMS

- Despite the accuracy of the SM and its predictive power many open outstanding questions, eg.:
 - matter-antimatter asymmetry
 - hierarchy problem
 - describes only ~5% of the universe, explanations for DM are not provided
 - gravitational force cannot be included in the current theoretical framework
- LHC main goals: studying EWK symmetry breaking (Higgs), precision test of SM, search for new physics
 - *direct production* of particles predicted by BSM theories
 - direct coupling to the SM sector can estimated
 - hints of new physics from *small deviations* between precision measurements and SM predictions
 - allows to distinguish between possible SM extensions and to derive indirect constraints on their parameters
 - LHC Run-2 data * detect rare processes
 - * use the Higgs as a discovery tool

Rich new physics program at ATLAS and CMS

DM evidence

assume weak interactions with SM

DM production

- Empirical evidence of DM from astrophysical observations at different scales
 - interacts gravitationally, long lived and neutral
 - no information about its nature
 - * most studied class of theories: DM is a weakly interacting massive particle

- DM could be produced at colliders (rare process)
 - * no direct trace in the detector, & could create a
 p_T imbalance (MET)
 - parton initial p_T=0, conserved

$$\overrightarrow{E}_{T}^{miss} = -\sum \overrightarrow{p}_{T}$$

 $|\vec{E}_T^{miss}|$ = missing transverse energy (MET)

- * need visible particle to which DM particle recoils against
 - "mono-X searches": X includes jets, vector bosons, top, …

DM evidence

assume weak interactions with SM

DM production

- Empirical evidence of DM from astrophysical observations at different scales
 interacts gravitationally, long lived and neutral
 - no information about its nature
- * most studied class of theories: DM is a weakly interacting massive particle
- DM could be produced at colliders (rare process)
 - * no direct trace in the detector, but could create a
 pT imbalance (MET)
 - parton initial $p_T=0$, conserved

$$\overrightarrow{E}_{T}^{miss} = -\sum \overrightarrow{p}_{T}$$

 $|\vec{E}_T^{miss}|$ = missing transverse energy (MET)

- need visible particle to which DM particle recoils against
 - "mono-X searches": X includes jets, vector bosons, top, ...

DM evidence

assume weak interactions with SM

DM production

investigate specific interactions/final states

DM signature

- ▶ DM nature (+m_{DM})
 - scalar (real or complex)
 - ☑ Dirac fermion (*assumption for LHC searches)
 - Ο...

Which type of events do we study at colliders? can assume different interactions (med. couplings gq, gDM)

DM evidence

assume weak interactions with SM

Which type of events do we study at colliders? can assume different interactions (med. couplings gq, gDM)

Dirac fermion (*assumption for LHC searches)

DM production

investigate specific interactions/final states

DM signature

Med(m_{med}) $g_q \sum V_\mu \bar{q} \gamma^\mu q$ $g_q \sum A_\mu \bar{q} \gamma^\mu \gamma^5 q$ **g**DM gq ~~~~~ pseudoscalar scalar spin-0 $g_q \frac{iA}{\sqrt{2}} \sum_f y_f \bar{f} \gamma^5 f$ $g_q \frac{\phi}{\sqrt{2}} \sum_f y_f \bar{f} f$ parameters: mDM, mmed, gq, gDM

axial-vector vector spin-I

DM nature (+m_{DM})

□ scalar (real or complex)

...

7-9 October 2019

 $\chi(m_{DM})$

χ

DM nature (+m_{DM})

...

□ scalar (real or complex)

DM evidence

assume weak interactions with SM

DM production

investigate specific interactions/final states

DM signature

Which type of events do we study at colliders? can assume different interactions (med. couplings gq, gDM)

Dirac fermion (*assumption for LHC searches)

* benchmark models: kinematically distinct set of model parameters ATLAS/CMS DM forum [arXiv:1507.00966] Simplified models: Simplified models: System of the set of model parameters Simplified models: Simpler Simpler (less parameters) (less parameters) Complete models: eg. ASSM more_oneters)

7-9 October 2019

Deborah Pinna - UW

How do we search for DM at colliders?

1 - Selection: DM appears as excess of events in MET tail wrt SM

- no very striking signature, eg. mass peak, m_T kinematic endpoint
- look for excess in region enriched in signal (signal region SR)
- 2 Blue: precise modeling and evaluation of other processes in SR essential
 - achieved through use of multiple control regions (CRs)
- 3 Results: Compare SM predictions with data
 - excess of events in data. Did we find DM?
 - no excess, interpret result in terms of theory model parameters

Experimental challenges

- accurate E calibration/resolution of visible objects ("fake" MET from mis-measured jets,
- mitigate effects from additional pp collisions (pile-up)
- MET thresholds affected by trigger (very high collision rates)
- precise particle reconstruction and identification

How do we search for DM at colliders?

1 - Selection: DM appears as excess of events in MET tail wrt SM

- no very striking signature, eg. mass peak, m_T kinematic endpoint
- look for excess in region enriched in signal (signal region SR)
- 2 Blue: precise modeling and evaluation of other processes in SR essential
 - achieved through use of multiple control regions (CRs)
- 3 Results: Compare SM predictions with data
 - excess of events in data. Did we find DM?
 - no excess, interpret result in terms of theory model parameters

Experimental challenges

- * accurate E calibration/resolution of visible objects ("fake" MET from mis-measured jets)
- mitigate effects from additional pp collisions (pile-up)
- MET thresholds affected by trigger (very high collision rates)
- precise particle reconstruction and identification

Spin-I mediator: simplified and extended sectors

Reminder:

* choose X to increase xsec or bkg rejection

H M M L C M

DM+jet search

▶ 3- Results: signal extracted through combined fit of SRs and CRs (systematic unc. as nuisance parameters)

DM+jet search

▶ 3- Results: signal extracted through combined fit of SRs and CRs (systematic unc. as nuisance parameters)

▶ 1 - Selection: events categorized based on vector boson boost, b-jets multiplicity

merged

***** ≥ 1 jets, p_T (j) > 200 GeV

- ***** MET > 250 GeV
- invariant mass jet consistent with V/Z'
- ***** 2-prong structure inside jet

ک

10⁵

resolved

- not selected as merged
- ***** ≥ 2 jets, p_T (j) > 30 GeV

mono-Z'

Data

★ MET > 150 GeV

≥ 2- Bkg:

ex. R=0.8,1.0]

- tt, Z(vv) and W(lv)+jets main bkg, from CRs
- 3- Results: combined fit of SRs and CRs
 - systematic unc. included as nuisance parameters

mono-V

Data

e<

10⁵

Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

▶ Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

Spin-1 interactions

Spin-1 interactions: "the invisible through the visible"

Spin-1 interactions: "the invisible through the visible"

Can we infer more on new physics from this signature?

TE JE JE

Signature: large MET and ≥1 high-p_T jet

mono-jet

(2015+2016) ***** CMS: <u>PRD97,092005(2018)</u> (2016)

ADD model

- *n* additional ED compactified on a torus of radius R
 - SM particles and interactions confined to the 3+1 dim
 - gravity diluted in 4+n dim
- increased phase space available in EDs enhance gravitons (G) production
- * G produced in pp collisions escape undetected into EDs mono-jet nignature

 $M_D^{n+2} = \overline{M}_{Pl}^2 / R_C^n$ M_D : fundamental Planck scale M_{Pl} : apparent 4-dim Planck scale

DM+jets interpretation in terms of ADD ED model: lower limits at 95% CL on M_D as a function of n

ADD model

- *n* additional ED compactified on a torus of radius R
 - SM particles and interactions confined to the 3+1 dim
 - gravity diluted in 4+n dim
- increased phase space available in EDs enhance gravitons (G) production
- * G produced in pp collisions escape undetected into EDs mono-jet nignature

 $M_D^{n+2} = \overline{M}_{Pl}^2 / R_C^n$ M_D : fundamental Planck scale M_{Pl} : apparent 4-dim Planck scale

▶ DM+jets interpretation in terms of ADD ED model: lower limits at 95% CL on M_D as a function of n

Warped extra dimension model

- one single compact extra dimension
 - in which both gravity and all SM fields propagate
 - gravity exponentially suppressed from Planck to TeV brane
- massive spin-2 resonance, first Kaluza–Klein excitation of graviton (G)
 - strength of the coupling depends on $\check{k}=k/MPI$ (k curvature of ED)
 - production through quark-antiquark annihilation and gluon-gluon fusion, *decay to WW, ZZ, HH visible signature*

Plethora of final states considered based on VV decay: upper limits at 95% CL on prod. xsec as a function of mG

Warped extra dimension model

- one single compact extra dimension
 - in which both gravity and all SM fields propagate
 - gravity exponentially suppressed from Planck to TeV brane
- massive spin-2 resonance, first Kaluza–Klein excitation of graviton (G)
 - strength of the coupling depends on $\check{k}=k/MPI$ (k curvature of ED)
 - production through quark-antiquark annihilation and gluon-gluon fusion, *decay to WW, ZZ, HH visible signature*

Plethora of final states considered based on VV decay: upper limits at 95% CL on prod. xsec as a function of m_G

Reminder:

* choose X to exploit coupling \propto to quark mass (or increase xsec)

DM+tt

CMS: PRL122,011803(2019)

(2016)

ATLAS: 01/21 EPJC78(2018)18

11 JHEP06(2018) 108, (2015+2016)

*

*

Spin-O mediator: simplified models

Signature: large MET and 1(2) top quarks

DM+top: t/tW-channel

CMS: JHEP03(2019)141, (2016) ATLAS: [HEP05(2019)41 (2005+2016) * [top+DM, different mediators: +2/3 charged, colored spin-0, or spin-1 with FCNC interactions]

DM+t(tt) search

▶ 1 - Selection: events categorized based on #leptons, # b-jets and #forward jets

- *Ol* * leptons veto: e,μ * ≥ 3 jets (*j* mall-cone) * $=1, \geq 2$ b-tagged jets * MET > 250 GeV +0 or ≥ 1 forward jets ($|\eta| > 2.4$)
- // * 1 lepton: isolated e,µ * \geq 2 jets (j small-cone) * =1, \geq 2 b-tagged jets * MET > 160 GeV +0 or \geq 1 forward jets (|η|>2.4)

0l, 2b

▶ 2- Bkg:

- *tt,* V+*jets main bkg, from CRs*
- 3- Remits: combined fit of SRs and CRs
 - systematic unc. included as nuisance parameters

1l, 1b, 0 forw. jets

7-9 October 2019

DM+t(tt) search

▶ 1 - Selection: events categorized based on #leptons, # b-jets and #forward jets

S- Results: interpretation in terms of DM model with Dirac DM upper limits at 95% CL on xsec

First search at LHC for DM+t or DM+tt in scalar/pseudoscalar interactions

* up to x2 limits improvement at high mediator masses wrt previous DM+tt results

Spin-O interactions: "the invisible through the visible"

Simplified scalar/pseudoscalar model

Iow sensitivity to off-shell region due to strong reduction of production cross-section

* Can we recover the sensitivity? visible decay

7-9 October 2019

Higgs boson: extended sectors and invisible decays

Signature: large MET and one Higgs boson candidate ▶ Various decay modes considered, H → H invisible decays mono-H(bb) 77 12% H WW 21% 58% 60 ATLAS: CONF-2018-039 ATLAS: PLB793(2019)499 CMS(TT, YY): JHEP 09 (2018) 046 * (2015+2016+ 2017) ATLAS: PLB793(2019)499 (2016)ATLAS: JHEP05(2019)142 CMS: PLB793(2019)520 ATLAS (yy): PRD96(2017)112004 (2015+2016)(2015+2016)CMS: EPJC79(2019)280, (2016) * CMS(WW,ZZ): arXiv:1908.01713, CMS:JHEP11(2018)172, (2016) (2016)

Higgs boson discovery

 mono-Higgs directly probe hard interaction (ISR Yukawa-suppressed)

 ATLAS: CONF-2018-039
 CMS:EPJC79(2019)280

 ATLAS: JHEP05(2019)142
 CMS:JHEP11(2018)172

▶ 1 - Selection: different approach based on Higgs boson boost

Intege boost Higgs I jet, pτ (j) > 200 GeV * [1,2] b-tagged jets categories * jet invariant mass in mH range ATLAS similar, with jet radius(pτ) for b-tagging [MET>500 GeV, 2 b-jets]

similar approach as large boost, but with "larger cone" to reconstruct the jet

▶ 2- Bkg:

- V+jets, tt main bkg, normalization (shape) from CRs

3- Results: combined fit of SRs and CRs

- m_T(MET, H) for large boost (CMS)
- MET for medium boost
- *m_H* large boost+resolved (ATLAS)

 ATLAS: CONF-2018-039
 CMS:EPJC79(2019)280

 ATLAS: JHEP05(2019)142
 CMS:JHEP11(2018)172

▶ 1 - Selection: different approach based on Higgs boson boost

▶ 2- Bhg:

- V+jets, tt main bkg, normalization (shape) from CRs
- 3- Results: combined fit of SRs and CRs
 - m_T(MET, H) for large boost (CMS)
 - MET for medium boost
 - m_H large boost+resolved (ATLAS)

 ATLAS: CONF-2018-039
 CMS:EPJC79(2019)280

 ATLAS: JHEP05(2019)142
 CMS:JHEP11(2018)172

▶ 1 - Selection: different approach based on Higgs boson boost

m_H large boost+resolved (ATLAS)

ATLAS: CONF-2018-039 🗳 CMS<u>:JHEP11(2018)172</u> ATLAS: [HEP05(2019)142

▶ 1 - Selection: different approach based on Higgs boson boost

mono-Higgs combination: rich phenomenology

CMS: <u>arXiv:1908.01713</u>
 ATLAS: <u>JHEP05(2019)142</u>
 ATLAS: <u>JHEP05(2019)142</u>

▶ Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

7-9 October 2019

mono-Higgs combination: rich phenomenology

CMS: arXiv:1908.01713 ATLAS: <u>|HEP05(2019)142</u> ATLAS: IHEP05(2019)142

Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

37

mono-Higgs combination: rich phenomenology

CMS: arXiv:1908.01713 ATLAS: <u>|HEP05(2019)142</u> ATLAS: IHEP05(2019)142

Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL on cross section

Higgs: a portal to the invisible?

CMS: <u>PLB793(2019)520</u>
 ATLAS: <u>PLB793(2019)499</u>
 ATLAS: <u>PRL122,231801(2019)</u>

- ▶ DM-SM interactions mediated by Higgs boson
 - direct coupling to DM enhance H invisible decays (SM ~0.1%)
- ▶ Higgs production as in SM
 - gluon fusion (MET+j)
 - associated VH (MET+V)
 - * vector-boson fusion (MET+2jets)

▶ 1 - Selection:

- 2 jets (large |Δη_{jj}|, small |ΔΦ_{jj}|), MET > 180-250 GeV
- ▶ 2- Bkg:
 - V+jets main bkg from CRs

- * precise estimation of bkg m_{jj} shape distribution, signal as excess of events at large m_{jj}
- * excellent calorimetry in forward region to measure jets

7-9 October 2019

Higgs: a portal to the invisible?

- ▶ DM-SM interactions mediated by Higgs boson
 - direct coupling to DM enhance H invisible decays (SM ~0.1%)
- Higgs production as in SM
 - gluon fusion (MET+j)
 - associated VH (MET+V)
 - * vector-boson fusion (MET+2jets)

▶ 1 - Selection:

- 2 jets (large $|\Delta \eta_{jj}|$, small $|\Delta \Phi_{jj}|$), MET > 180-250 GeV
- ≥ 2- Bkg:
 - V+jets main bkg from CRs

Experimental challenges

- * precise estimation of bkg m_{jj} shape distribution, signal as excess of events at large m_{jj}
- * excellent calorimetry in forward region to measure jets

- ₩ ATLAS<u>: PLB793(2019)499</u>
- ATLAS: <u>PRL122,231801(2019)</u>

Higgs: a portal to the invisible?

CMS: <u>PLB793(2019)520</u> ATLAS<u>: PLB793(2019)499</u> ATLAS: <u>PRL122,231801(2019)</u>

- ▶ DM-SM interactions mediated by Higgs boson
 - direct coupling to DM enhance H invisible decays (SM ~0.1%)
- ▶ Higgs production as in SM
 - gluon fusion (MET+j)
 - associated VH (MET+V)
 - * vector-boson fusion (MET+2jets)

7-9 October 2019

2

▶ 3- Results: combined fit of SRs and CRs to m_{jj}

- ▶ 3- Results: translated into a spin-independent DM-nucleon elastic scattering xsec limit [PLB709(2012)65]
 - * m_{DM} smaller than half of m_H interaction between DM and nucleus mediated by H exchange 4.9 fb⁻¹(7 TeV) + 19.7 fb⁻¹(8 TeV) + 38.2 fb⁻¹(13 TeV) 4.9 fb⁻¹(7 TeV) + 19.7 fb⁻¹(8 TeV) + 38.2 fb⁻¹(13 TeV)

- ▶ 3- Results: translated into a spin-independent DM-nucleon elastic scattering xsec limit [PLB709(2012)65]
 - ★ m_{DM} smaller than half of m_H interaction between DM and nucleus mediated by H exchange 4.9 fb⁻¹(7 TeV) + 19.7 fb⁻¹(8 TeV) + 38.2 fb⁻¹(13 TeV)
 4.9 fb⁻¹(7 TeV) + 19.7 fb⁻¹(8 TeV) + 38.2 fb⁻¹(13 TeV)

Dark photon in Higgs decays

ATLAS: <u>arXiv:1909.01246</u> CMS: <u>arXiv1908.02699</u>

- Simplified models make minimal assumptions
- An extended dark sector might exist
 - contain DM candidate and a heavy resonance that couples dark sector to the SM
 - can lead to H exotic decays
- Massless dark photon γ_D couples to H and escape undetected (MET signature)
 - $BR(H \rightarrow \gamma \gamma_D) < 5\%$ not yet excluded
 - consider *associated* 2(*ll*)*H production* and heavy neutral H with masses [125, 300] GeV

- Massive γ_D mixes kinetically with SM γ and decays into SM leptons and light quarks
 - kinetic mixing term (ϵ) determines γ_D lifetime
 - assume γ_D small mass leads to large boosts:
 collimated leptons and light badrons in jet-like structure

Summary

New physics is a main physics goal at the LHC

▶ Rich new physics analyses program at ATLAS and CMS

- various interactions and signatures investigated
- new experimental tools used to improve sensitivity

no signs of an excess yet so far

- Essential complementarity with non-collider searches in the search for dark matter
 - comparisons possible only in the context of a benchmark model
 - essential to fully specify model/parameters and be aware of limitation

▶ Many new results expected with full 2016+2017+2018 data

- various analysis improvements foreseen

[credit Lison Bernet, EWK Moriond '19]

Particle reconstruction at CMS

Jet reconstruction

particle-flow candidates clustered using anti-k_T algorithm

MET

$$MET = -\left|\sum \vec{p_T}\right|$$

used to indirectly detect non-interacting particles sum over all PF candidates

Deborah Pinna - UW

DM+V/Z' search: additional results

▶ invisible Higgs boson decays:

- observed (expected) upper limit on H BR(inv): <0.83 (0.58) at 95% CL
 - combining the contributions from VH, ggH and VBF production modes

▶ xsec of DM+W/Z

- SR selection except m_{jet} requirements and the b-jet multiplicity
 - stronger limits for DM+Z wrt DM+W because in 2b cat (highest sensitivity/lowest bkg) mainly DM+Z events

DM+t(tt) search: phenomenology

- Two is not always better than one ... (Phys. Rev. D 96, 035031)
 - DM+t previously overlooked production predicted from same spin-0 model
 - *minimal flavour violation*, couplings proportional to SM fermions masses
 - motivated various collider searches for DM+# and DM+#
 - sizable contribution to DM searches with HF quarks (up to factor of 2)
 - up to now only FCNC processes (mono-top)

 $\bar{t}(\bar{b})$

t(b)

لاوووووو

8 DODDDDDD

gq

DM+t(tt)

Scalar xsec: dominated by gluon-fusion diagram with a mediator fragmentation Pseudo xsec: both mediator-fragmentation and top-fusion diagrams in gluon-fusion are relevant

7-9 October 2019

DM+t(tt) search: phenomenology

tt+DM

Scalar xsec: dominated by gluon-fusion diagram with a mediator fragmentation *Pseudo xsec:* both mediator-fragmentation and top-fusion diagrams in gluon-fusion are relevant

t+DM

- ▶ t-channel: has contributions only from diagrams with mediator fragmentation
- ▶ *tW-channel has contributions from both mediator-fragmentation and top-fusion diagrams*

DM+t(tt) search: selection

▶ 1 - Selection: events categorized based on #leptons and # b-jets

	Single-lepton SRs			All-hadronic SRs		
	1 <i>l</i> , 1 b-tag, 0 FJ	1 <i>l</i> , 1 b-tag, 1FJ	1ℓ , 2 b-tag	0ℓ, 1 b-tag, 0 FJ	0ℓ,1 b-tag, 1 FJ	0ℓ, 2 b-tag
Forward jets	=0	≥ 1	_	= 0	≥ 1	_
n _b	=1	=1	≥ 2	=1	=1	≥ 2
<i>n</i> _{lep}	=1	=1	=1	= 0	=0	=0
$p_{\mathrm{T}}(\mathbf{j}_{1})/H_{\mathrm{T}}$	_			— <0.5		
n _{jet}	≥ 2			≥ 3		
$p_{\rm T}^{\rm miss}$	>160 GeV			>250 GeV		
m _T	>160 GeV			—		
m_{T2}^W	>200 GeV			—		
$\min \Delta \phi(\mathbf{j}_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	>1.2 rad.			>1.0 rad.		
m ^b _T	>180 GeV			>180 GeV		

DM+t(tt) search: background estimation

▶ 2- Bkg:

- tt, V+jets main bkg contributions
 - **CRs**: similar selection to SR except #leptons and hadronic recoil as proxy for $Z(\mathcal{U})$ CR
 - no b-jets/forward jets categories
- remaining contributions from simulation
- ▶ 3- Results:
 - bin-by-bin maximum likelihood fit to MET distributions in SR and CR, fitted simultaneously
 - **constrained nuisance parameters:** effect of syst. unc. constrained by magnitude of corresponding source of unc.
 - unconstrained parameter: rate parameters, connect separately each main bkg across CRs and SRs for each bin of MET spectrum
 - expected signal included in fit of SRs and CRs to account for CR contaminations

- * DM production cross section: expressed in terms of ratio between excluded xsec and theory prediction
 - computed with modified frequentist approach (CLs), profile-likelihood ratio as test-statistic in the asymptotic approximation
- ***** syst. unc. included as nuisance parameters
 - dominant unc from b-tagging eff data/MC scale factors, theoretical unc on backgrounds

mono-H:WW and ZZ decays

mono-Higgs: WW and ZZ decays

▶ 1 - Selection: MET and identification of Higgs boson candidate

- ★ 1 opposite-sign eµ pair
- ***** MET > 20 GeV
- *v* prevent full kinematic
 Higgs reconstruction
 - * MVA techniques to
 recover sensitivity

fit to MVA in CRs and SR

from fit to MET

mono-Higgs: WW and ZZ decays

▶ 1 - Selection: MET and identification of Higgs boson candidate

fit to MVA in CRs and SRs

from fit to MET

mono-Higgs: WW and ZZ decays

▶ 1 - Selection: MET and identification of Higgs boson candidate

★ 1 opposite-sign eµ pair

* MET > 20 GeV

v prevent full kinematic
 Higgs reconstruction
 * MVA techniques to recover sensitivity Higgs L+

- * = 4 leptons
 * Z candidates from same flavour l+l-
- m4l consistent with SM Higgs

≥ 2- Bkg:

- tt, single top
 - **CRs**: similar selection to SR except #b-jets (=1) and hadronic recoil as proxy
- **remaining contributions** from data driven methods or from simulation

► Note:

- easily reducible backgrounds

≥ 2- Bkg:

- SM Higgs boson and non-resonant ZZ production from simulation
- **remaining contributions** from data driven methods or from simulation

▶ Note:

- easily reducible backgrounds
- fully reconstructable Higgs boson candidate, with excellent mass resolution

mono-H: bb and combination

mono-Higgs: bb (high-boost), CMS

- ★ signal will appear as localized excess in the m_T (A(inv), H(bb)) distribution above SM backgrounds
 - resonance masses [0.8, 4] TeV considered to have a sufficiently boosted Higgs boson

***** *b*-jet categorization:

- *2 b-tagged category most sensitive at low mX
- * I b-tagged category most sensitive at high m χ
 - * track-reconstruction efficiency decreases + overlap between the two subjets at very large jet p_T
- *****V+jets main bkg contributions
 - ***** tt estimated from CR
 - ★V+jet: m_T distribution in SR derived from data in the m_{jet} SB + a transfer function determined from simulation

mono-Higgs: bb (high-boost), CMS

≥ 3 - Results:

- ***** results extracted from $m_T(A(inv), H(bb))$ distribution
- ***** syst. unc. included as nuisance parameters
 - dominating unc from bkg estimation/normalization

mono-Higgs: bb (Z'-2HDM)

CMS: high boost

ATLAS: resolved+high boost

Back 65

Dark photon in Higgs decays

- Several BSM models predict H decays to undetected particles and photons
 - consider associated ZH production
- Massless dark photon γ_D couples to H through a charged dark sector and escape undetected (MET signature)
 - BR(H $\rightarrow \gamma \gamma_D$) <5% consistent with all model parameters and LHC constraints
 - also heavy neutral H with masses [125, 300] GeV considered
 - ≥ 1 Selection:
 - 2 opposite charge leptons same-flavor (ee,µµ), consistent with Z boson decay
 - $\geq 1 \gamma$
 - MET > 110 GeV

▶ 3- Remets: signal extracted fitting $m_T(\gamma, MET)$ in bins of $|\eta(\gamma)|$ using in SRs and CRs (systematic unc. as nuisance parameters)

 Z/γ^*

Deborah Pinna - UW