

Particle physics with air showers at the highest energies

Antonella Castellina

Osservatorio Astrofisico di Torino, INAF & INFN

4th Uppsala Workshop PPNT19, 7-9 October 2019

Take home message

There is a strong correlation between CR physics and particle physics

- LHC tuning of hadronic interaction models employed in UHECR are needed to lower the systematic uncertainties on composition measurements
- contribution/constraints to the determination of hadronic interaction properties can be provided by Astroparticle Physics measurements in a very different energetic and kinematic phase space, for targets with <A>~14
- ➡ BSM searches at UHE can be performed exploiting Extensive Air Shower Arrays

CR flux and interaction energies

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

PARTICLE PHYSICS

✓ energy range >30 times larger that LHC
 ✓ very forward kinematic region
 ✓ p-nucleus or nucleus-nucleus interactions

Tests of fundamental interactions and their models

PPNT19, 7-9 October 21019

Antonella Castellina

PPNT19, 7-9 October 21019

Antonella Castellina

The shower observables

In a hybrid detector we can perform precision measurements of the shower observables 100% duty cycle for the Surface Detector

~15% duty cycle for the Fluorescence Detector

Energy calibration at Auger

ENERGY

calorimetric energy measurement with fluorescence telescopes

Invisible energy evaluated from dat, as $E_{inv} \propto ~N_{\mu}$

 $E_{Cal} = \int_0^\infty dX \ \frac{dE}{dX}$ $E_{Tot} = E_{Cal} + E_{Inv}$

Composition-related observables

Distribution of X_{max}

$$\langle X_{max} \rangle = \langle X_{max}^p \rangle + f_E \langle lnA \rangle$$

 $\sigma^2(X_{max}) = \langle \sigma_{sh}^2 \rangle + f_E \sigma_{lnA}^2$

 X_{max} resolution from 25 to 15 g cm⁻² for increasing E $\sigma_{sys} \le 10$ g cm⁻² Separation between p and Fe showers ~ 100 g cm⁻²

Muons: N_{μ} , muon production depth ($X_{\mu_{max}}$)

$$\begin{split} N^p_{\mu} &\approx \left(\frac{E}{\varepsilon^{\pi}_{\rm d}}\right)^{\beta} \\ N^{\rm A}_{\mu} &\approx A \left(\frac{E/A}{\varepsilon^{\pi}_{\rm d}}\right)^{\beta} = N^p_{\mu,{\rm max}} A^{1-\beta}. \end{split}$$

information about mass is model dependent

Neutral primaries

EAS from neutrino primaries

- horizontal events: very elongated
- look young: significant EM component, wide time distribution, strong curvature, steep LDF

EAS from photon primaries

- \checkmark develop deeper in atmosphere: larger X_{max}
- less muons
- look young: larger rise time, larger curvature
- ✓ steeper LDF
- less affected by uncertainties in the hadronic interaction models

Astrophysical interpretation

composition fraction

Mass fractions at Earth from fitting templates of 4 mass groups to the measured X_{max} distributions

Peter's cycle ∝ E/Z or Spallation ∝ E/A ?

Combined fit of energy spectrum and X_{max} distribution

from a simplified astrophysical model of sources and injection

- UHECR spectrum at Earth
 Composition at Earth
 Neutrino fluxes
 produced in the source
 - produced during propagation

Composition measurements

Air shower+hadronic interaction models are required to convert N_{μ} and X_{max} to ~A

large model uncertainty, maximum contribution to systematics

- these uncertainties arise from a lack of data on multiparticle production in the very forward phase space in hadron-nucleus interactions at UHE
- they increase for increasing energy (farther from the tested region)

Models

Air shower simulations

- ✓ start from a primary particle (E,A, $9,\phi$) interacting after crossing a column density X₀
- ✓ track the particles through the atmosphere
- ✓ include all particle interactions and decay modes
- ✓ include models of hadronic interactions
- ✓ CORSIKA, SENECA, AIRES

Hadronic interaction models

low energies [from parametrizations of data] GHEISHA, FLUKA

high energies [QCD-inspired]

 QGSJetII-04
 [S.Ostapchenko, PRD83 (2011) 014018]

 EPOS-LHC
 [T.Pierog et al., PRC92 (2015) 034906]

 Sibyll2.3c
 [F.Riehn et al., PoS(ICRC2017) 301]

From a primary with E ~ 10^{20} eV ~10 sub-showers of E ~ 10^{19} eV ~ 10^{6} sub-showers of E ~ 10^{14} eV ~ 10^{11} sub-showers of E ~ 10^{9} eV

Sensitivity of EAS observables

PPNT19, 7-9 October 21019

12

12

The p-Air cross section

The tail of the longitudinal distribution of X_{max} is sensitive to the p-Air cross section.

Select deeply penetrating EAS to enhance the proton fraction

Antonella Castellina

Inelastic p-p cross section

 $\sigma_{tot, el, inel}$ = Key to constrain the UHECR penetration in the atmosphere Glauber model validated by LHC heavy ion measurements (CMS p-Pb collisions)

More precise data, more constraining to models

Note:

- the newest Sibyll2.3c predictions are ~ EPOS-LHC
- the extrapolation from Tevatron to LHC ~ that from LHC(14 TeV) to Auger !

[@D'Enterria et al., arXiv:1809.06406]

Antonella Castellina

Inelasticity

- a larger k_{inel} implies less energy available for forward particle production: the EAS develops faster, so X_{max} is shallower
- forward baryon production important for muon production: no models agree with LHCf measure of n in p-p(13 TeV)

The central particle multiplicity

- while pre-LHC models gave differences up to a factor 2 at the predicted LHC particle multiplicities, post-LHC ones show a 30% difference at the GZK cutoff
- all models agree well up to $(dNch/d\eta)_{\eta=0} \sim 5.5$ (E_{CR}~10^{18.5} eV)
- note that the new version of Sibyll (2.3c) is now very similar to EPOS-LHC

The muon problem

Measurements of the muonic component in inclined EAS

@1018 eV: 38% (53%)

@ 1019 eV: 30% to 80%+17_20 (sys)% increase in $<\!N_{\mu}\!>$ needed

[@Auger Coll., PRLD91 (2015) 032003+059901] [@F.Sanchez, PoS(ICRC2019) 411]

E_0 =6-16 EeV [E_{CM} =110-170 TeV]

match real events longitudinal distribution with a set of simulated p and Fe-induced showers (same E,**9** as observed) and compare their simulated LDF at ground with the measured one

$$S_{res}(R_E, R_{had})_{i,j} = R_E S_{EM,i,j} + R_{had} R_E^{\alpha} S_{had,i,j}$$

- no need for an energy rescaling
- observed muon signal 1.3-1.6 times larger than expected
- smallest discrepancy with prediction of EPOS-LHC for mixed composition (~2 σ)

[@Auger Coll., PRL117 (2016) 192001]

Muons from EAS experiments

Clear muon deficit in simulations wrt observations

Slope significantly different from zero (>8 σ) for E>10¹⁶ eV

The slope does not change if a different energy or mass scale is considered

[@L.Cazon, PoS(ICRC2019) 214]

More information from muons in EAS

$$N_{\mu} = A^{1-\beta} \left(\frac{E_0}{E_{dec}}\right)^{\beta}$$

Strong correlation between E_{had}/E_0 and N_{μ} , independent on the hadronic interaction model

$$\alpha_1 = \sum_{i=1}^m \left(\frac{E_i^{\text{had}}}{E_0}\right)^{\beta} \qquad \beta = \frac{\log(m)}{\log(m_{tot})}$$

$$\left(\frac{\sigma(N_{\mu})}{N_{\mu}}\right)^{2} \simeq \left(\frac{\sigma(\alpha_{1})}{\alpha_{1}}\right)^{2} + \left(\frac{\sigma(\alpha_{2})}{\alpha_{2}}\right)^{2} + \dots + \left(\frac{\sigma(\alpha_{c})}{\alpha_{c}}\right)^{2}$$

Fluctuations in the muon number = probe of the first interation at UHE

More information from muons in EAS

The measure of the proton exponential tail is related to the properties of multiparticle production of the first interaction

Solving the µ puzzle?

$$N_{\mu} = A^{1-\beta} \left(\frac{E_0}{E_{dec}}\right)^{\beta}$$
$$\beta = \frac{\ln N_{had}}{\ln(N_{had} + N_{em})} = 1 + \frac{1-\alpha}{\ln(N_{had} + N_{em})}$$

- a change in multiplicity ($N_{had}+N_{em}$) affects both X_{max} and N_{μ}
- a change in α (fraction of energy going in π⁰ in each interaction) modifies only N_µ
 [e.g. a small ~5% change in hadronic fraction in ~6 cascade steps produces a -30% in α]
- any change must be compatible with all moments (N_µ, X_{max}, X^µ_{max}, their fluctuations...)

More muons :

✓ baryon-antibaryon production
 ✓ leading particle effect (π⁰ replaced with ρ⁰)
 ✓ QGP
 ✓

[@H.Dembinski, PoS(ICRC2019) 235]

Future steps

Strong constraints from LHC measurements to extrapolations in energy

Main source of uncertainty from models is the difference between p-p and p-nucleus collisions

- p-light ion collisions: can provide calibration of nuclear effects in p-N interactions of EAS
- O beam as light ion have been chosen for a data acquisition in Run3 (2023)

Antonella Castellina

Searches for Lorentz invariance violation

$$E_i^2 - p_i^2 = m_i^2 + \sum_{n=0}^N \delta_i^{(n)} E_i^{2+n} = m_i^2 + \eta_i^{(n)} \frac{E_i^{2+n}}{M_{Pl}^n}$$

Effects suppressed for low energy and short travel distances : UHECRs !!!

LIV - hadron sector

Combined fit

of spectrum+composition

Best fit: low maximum rigidity LIV effects suppressed by energy

LIV - photon sector

GZK photons propagated following the two scenarios (A=global and B=local minima)

➡ A: no limits on LIV can be imposed

⇒ B:
$$\delta_{\gamma}^{(1)} \gtrsim -10^{-40} \,\mathrm{eV^{-1}}$$
 and $\delta_{\gamma}^{(2)} \gtrsim -10^{-60} \,\mathrm{eV^{-2}}$.

LIV - air showers

Searches for magnetic monopoles

- \bigcirc intermediate mass ultra-relativistic monopoles with M∼10¹¹-10¹⁶ eV/c² (IMM), E_{mon} ~ 10²⁵ eV can be present today as relic of phase transitions in the early Universe
- search based on larger energy deposit and deeper development due to superposition of many showers produced by the IMM

$\log_{10}(\gamma)$	$\mathcal{E}(\gamma)$ (km ² sr yr)	$\Phi_{90\%{ m C.L.}}~(({ m cm}^2{ m sr}{ m s})^{-1}$
8	1.16	8.43×10^{-18}
9	9.52×10^{1}	1.03×10^{-19}
10	4.50×10^{2}	2.18×10^{-20}
11	3.15×10^{3}	3.12×10^{-21}
≥ 12	3.91×10^{3}	2.51×10^{-21}

[@A.Aab et al (Auger Coll.) PRD94 (2016) 082002]

PPNT19, 7-9 October 21019

Antonella Castellina

20

Conclusion

A wealth of information about hadronic interactions came from accelerator experiments, allowing fine-tuning of UHECR models used in simulations. p-O run foreseen in 2023

More information obtained by CR measurements at UHE and in unexplored kinematic regions and interactions :

- p-p cross section
- muon puzzle
- muon fluctuations, slope of the muon distribution tail
- BSM searches (monopoles, LIV, top-down models)

Increase in statistics at UHE Composition sensitivity at and above the suppression region (E>4 10¹⁹ eV) More data on neutrinos and photons More information on hadronic interactions

Backup

UHECR future: AugerPrime

[A.Castellina+, EP] Web Conf., 210 (2019) 06002] PPNT19, 7-9 October 21019

a large exposure detector with composition sensitivity above ~4 10¹⁹ eV

- ➡ 12 upgraded stations (Engineering) Array) since 2016 with new electronics, higher sampling, large dynamic range
- the SSD preproduction array: 80 stations (since March 2019)
- ⇒ 356 SSD stations already deployed
- Underground Muon detector
- the world-largest radio detector more statistics, more observables

Antonella Castellina

UHECR future: TAx4

increase the coverage to $\sim\!3000~km^2$ to increase the statistics at UHE

- ➡ the SD array: increased by 500 stations with 2 km spacing
- ➡ the FD telescopes: increased by 4 FD in the Northern site, 8 in the Southern site

TALE hybrid =
 low energy extension of
 TA hybrid sensitivity
 down to 10¹⁶ eV, with
 FDs observing higher
 elevation, Densely arrayed SDs

[S.Ogio, Highlight Talk, PoS(ICRC2019) 013]

More information from muons in EAS

The slope Λ_{had} must be connected to the energy spectrum on neutral pions: $E_{em} = 1 - E_{had} \longrightarrow$ same fluctuations

MC simulations: changing the HE tail of the π^0 produces a change in the tail of the N_µ distribution

 Λ_{μ} depends on the energy given to the leading pion

[@R.Conceiçao, PoS(ICRC2019) 226]

Solving the puzzle?

Solving the puzzle?

Collective hadronization: QGP

Production of higher mass particles not suppressed=more massive hadrons

Slope of muon production larger wrt other models Not enough to reproduce data

PPNT19, 7-9 October 21019

only)

10²¹

р

10²⁰

QGSJETII-04

EPOS Extreme

10¹⁹

EPOS QGP

(eV)

10¹⁸

Energy

- EPOS LHC

10¹⁶

SIBYLL 2.3c

10¹⁷

0.015

10¹⁵

freeze out Collective Effects hadron gaz QGP pre-e primary inter. Proj. A Target B

The p-p cross section

PPNT19, 7-9 October 21019

PPNT19, 7-9 October 21019

Antonella Castellina

Some results from Auger

