COMBINING STERILE NEUTRINO FITS TO SHORT BASELINE DATA WITH ICECUBE DATA

Marjon Moulai

In collaboration with:

Carlos Argüelles, Gabriel Collin, Janet Conrad, Alex Diaz, & Mike Shaevitz

Outline

- Introduction
 - Sterile neutrinos
 - What makes IceCube unique
- ✤ Fit results for a 3+1 model New!
- ✤ Fit results for a 3+1+decay model New!
- Conclusion

Anomalies have been observed

- And seem to fit a 3+1 sterile neutrino model at some level
- Can parameterize a 3+1 model with Δm_{41}^2 and $\theta_{\mu e}$ (simplification)

LSND : 3.8σ

Marjon Moulai – MIT

LSND and MiniBooNE Fits to 3+1 model

LSND (\overline{v}) and MiniBooNE (v and \overline{v}) combined best fit:

- (Δm², sin²2θ) = (0.04 eV², 0.96)
- ★ χ^2 /dof = 22.4/22.4
- p-value for the χ^2 = 42.5%
- Significance of combined excesses: 6.0σ

arXiv:1805.12028

Short-Baseline (SBL) Experiments Included in Fits

Short-Baseline (SBL) Experiments Included in Fits

✤ Baselines are short → Negligible matter effects → Vacuum oscillations

Marjon Moulai – MIT

arXiv:1906.00045

SBL Only Global Fit to 3+1

[arXiv:1906.00045]

Best-Fit Point:

$$\Delta m^2_{41} = 1.3 \text{ eV}^2$$

$$\sin^2 2\theta_{\mu e} = 0.00098$$

- 5.2σ for sterile neutrino vs. Standard Model
- Why isn't this a discovery? Tension...more on this later

$$P_{\nu_e \to \nu_e} = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_\mu} = 1 - 4(1 - |U_{\mu4}|^2)|U_{\mu4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_e} = 4|U_{e4}|^2|U_{\mu4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

Marjon Moulai – MIT

IceCube has a unique method for sterile searches

Matter Resonance

Matter Resonance

Plotted for:

 $\Delta m_{41}^2 = 1 \text{ eV}^2$, sin²2θ₂₄ = 0.1 (compatible with best fit)

IceCube Oscillogram

For point: $\Delta m_{41}^2 = 1 \text{ eV}^2$, $\sin^2 2\theta_{24} = 0.1$ (compatible with SBL best fit)

1-year High Energy Search for Sterile Neutrinos in IceCube

IceCube found no evidence for ~1-eV sterile neutrino.

IceCube, 2016 arXiv : 1605.01990

Upcoming Results from IceCube

- Expanding 1-year search to 8 years
- See PPNT19 talk by Carlos Argüelles

Fitting a 3+1 Model

[arXiv:1906.00045]

Incorporating IceCube data into 3+1 fit

- Cannot be directly incorporated into fit
- Compute IceCube likelihood for a random down-sample of points from the SBL global fit
- Convert IceCube likelihood into $\chi^2_{IceCube}$ and add to χ^2_{SBL}

$$\chi^2_{\rm SBL+IC} = \chi^2_{\rm SBL} + \chi^2_{\rm IceCube}$$

arXiv:1906.00045 Marjon Moulai – MIT

Incorporating IceCube data into 3+1 fit

Significant Tension Remains in the Fits

3+1+Decay Model

In the Standard Model, stable particles are those protected by a symmetry.

Standard Model Neutrino Decay

Pal & Wolfenstein, PRD 25:766-773, Feb. 1982 Nieves, PRD, 28:1664-1670, Oct 1983

3+1 with Invisible v₄ Decay

- ↔ ϕ and ψ are BSM particles that are invisible to the detector
- ✤ Assume neutrinos are Dirac

What does 3+1+decay look like in IceCube?

IceCube Oscillograms: \overline{v}_{μ}

For
$$\tau = 1/\text{eV}$$
:
 $\hbar c \tau \approx 1 \, \mu \text{m}$

IceCube Oscillograms: v_u

For
$$\tau = 1/\text{eV}$$
:
 $\hbar c \tau \approx 1 \, \mu \text{m}$

μm

Future 3+1+Decay Search in IceCube

3+1+Decay Fit Results

SBL only fits to 3+1+decay

IceCube added to 3+1+Decay fits

Allowed regions at 95% C.L.

✤ IceCube eliminates the island around 0.5 eV²

Zooming in on allowed region at 95% C.L.

Conclusions

- Sterile neutrinos could explain some anomalies we've seen
- IceCube sees a unique signature of sterile neutrinos
- Added 1-year of IceCube data to SBL fits of 3+1 and 3+1+decay
- Both 3+1 and 3+1+decay models improve over the Standard Model
- Yet tension remains, although reduced in 3+1+decay

Combined Short Baseline + IceCube Fit Results

Model	Improvement over $3v$ (Significance of $\Delta \chi^2_{3v}$)	Improvement over 3+1 (Significance of $\Delta \chi^2_{3+1}$)	Tension (Parameter- Goodness-of-Fit)
3+1	$5.2\sigma \rightarrow 4.9\sigma$:minary	$4.5\sigma \rightarrow 4.8\sigma$
3+1+Decay	$5.6\sigma \rightarrow 5.4\sigma$	$2.6\sigma \rightarrow 2.8\sigma$	$3.2\sigma \rightarrow 3.5\sigma$

$$\mathsf{SBL} \longrightarrow \mathsf{SBL}\mathsf{+}\mathsf{IC}$$

Thank you! Questions?

Back-Up

Parameter Goodness of Fit (PGF)

- Perform three separate fits:
 - Appearance-only experiments (app)
 - Disappearance-only experiments (dis)
 - All experiments (glob)
- Effective χ^2 :

$$\chi^2_{\rm PGF} = \chi^2_{\rm glob} - \left(\chi^2_{\rm app} + \chi^2_{\rm dis}\right)$$

Effective degrees of freedom:

$$N_{\rm PGF} = N_{\rm glob} - (N_{\rm app} + N_{\rm dis})$$

Neutrino Decay Equations

Hamiltonian for standard oscillations in matter
Hamiltonian, where
$$\Gamma = 1/\tau$$
:
 $H = H_0 - i\frac{1}{2}\Gamma$
(1)

Density matrix formalism:

$$\frac{\partial \rho(E,x)}{\partial x} = -i[H_0,\rho] - \frac{1}{2}\{\Gamma,\rho\}$$
(2)
Neutrino ensemble

Calculate with nuSQuIDS

Position of resonance maps onto sterile parameter space

Position of resonance maps onto sterile parameter space

 $\Delta m_{41}^2 = 0.1 \ {
m eV}^2$

 $-0.6 - 0.4 - 0.2 \ 0.0 \ 0.2$

 $\cos \theta_{\bar{\nu}_{...\bar{\nu}}}^{true}$

 10^{5}

 10^{4}

 10^{3}

 10^{2}

0-0.8

 $0.\overline{2}$

 $\Delta m_{41}^2 = 0.3 \ {\rm eV}^2$

-1.0-0.8-0.6-0.4-0.2 0.0

 $\cos\theta_{\bar{u}}^{true}$

 10^{5}

 10^4

 10^{3}

 10^{2}

 $E_{ar{
u}_{\mu}}^{true}\,/{
m GeV}$

 $\cos \theta_{\bar{
u}_{u\,z}}^{true}$

Constraints on Neutrino Decay

Marjon Moulai – MIT

Flavor-dependent bounds

Bound from meson decays:

Assume only one g_{4j} is non-zero: From SBL fits:

FION SEL INS.

From standard measurements:

 $\sum |g_{e\alpha}|^2 < 3 \times 10^{-5}$ α $g_{\alpha\beta} = \sum_{i,j} g_{ij} U_{\alpha i} U_{j\beta}^*$ $g_{\alpha\beta} = g_{4j} U_{\alpha4} U_{j\beta}^*$ $U_{\alpha 4} \sim \mathcal{O}(0.1)$ $U_{j\beta} \sim \mathcal{O}(0.1)$ $\Rightarrow g_{4i} < \mathcal{O}(0.1)$ $\Gamma_{ij} = g_{ij}^2 m_i / 32\pi$ $\tau_{ii} > 10^4 / m_i$

But if more than one g_{4j} is non-zero, cancellations may occur, decreasing the constraint on decay rate.

Sterile Neutrinos and Cosmological Bounds

- Active area of research
- Bounds from cosmology are model-dependent
- Hubble Tension (4 σ)
 - Planck CMB + LCDM: [arXiv:1807.06209]
 - Hubble Space Telescope, local measurement: [arXiv:1903.07603]

 $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$ $\downarrow N_{\text{eff}} = 2.99 \pm 0.17$ $H_0 = 74.03 \pm 1.42 \text{ km/s/Mpc}$

- Relaxing H₀ could accommodate higher N_{eff}
- "Secret interactions" could prevent/delay sterile neutrino thermalization
 - [arXiv:1902.00534]
 - Strongly interacting" neutrino cosmology fits:
 - $N_{eff} = 4.02 \pm 0.02$
 - $H_0 = 72.3 \pm 1.4 \text{ km/s/Mpc}$
 - [arXiv:1806.10629]
 - Secret interactions that may evade bounds from CMB, LSS, & BBN
 - Prompt invisible decay may help
- Ultra-light scalar with Yukawa coupling to sterile neutrino
- Cosmological implications of 3+1+decay needs to be studied

Marjon Moulai – MIT

[arXiv:1907.04271]