

The FCC-ee Project

Mogens Dam Niels Bohr Institute Copenhagen University

Seminars Uppsala & Stockholm April, 2019

Picture and slide layout, courtesy Jörg Wenninger

Where we are

Seven years with the Higgs boson

□ The Higgs boson seems so far to be a rather Standard Model one

- **D** To current precision "everything" looks to be rather Standard Model
- □ So far, no indications for new BSM physics up to several hundred GeV
 - However: in flavour physics, tensions observed between LHCb data and SM predicitions

Standard Model Complete...

With the Higgs boson, the Standard Model as a theory of particles and their interactions is now

- ✓ complete
- ✓ coherent
- ✓ predictive to all energies

It is most likely not!

Many unanswered questions based on experimental observations?

- □ Why 3 generations of fermions ?
- Why is the Higgs boson so light (so-called "naturalness" or "hierarchy" problem) ?

Is this the end ?

- What is the origin of neutrino masses and oscillations ?
- What is the composition of dark matter ?
- □ Why is gravity so weak ?
- What is the origin of the matter-antimatter asymmetry in the Universe [BAU] ?
- What is the origin of the Universe's accelerated expansion ?

New Physics ?

Many diverse theoretical ideas to extend Standard Model (with new particles)

- Is new physics at larger masses ? Or at smaller couplings ? Or both ?
 - Only way to find out: *go look*, following the historical approach:
 - Direct searches for new heavy particles
 - ⇒ Need colliders with *larger energies:* **Energy frontier**
 - Searches for the imprint of New Physics at lower energies, e.g. on the properties of Z, W, top, and Higgs particles
 - ⇒ Need colliders/measurements with *unprecedented accuracy:* **Precision frontier**

Energy vs Precision

• Many ideas lean towards higher-energy replicas of the standard theory

Direct searches at larger energies may be the key – but how much larger ?

* Rare decays and precise measurements may also unveil these extension's imprints

Precision vs. Energy

The Standard Model is complete ? Obviously three pieces missing !

- Three right-handed neutrinos ?
 - Extremely small couplings, nearly impossible to find but could explain "everything" !
 - Small m_v (see-saw), DM (light N₁), and BAU (leptogenesis)
 - Need very-high-precision experiments to unveil
 - * Could cause a slight reduction (increase) in the Z (H) invisible decay width
 - $\ast\,$ Could open exotic Z and Higgs decays: Z, H $\rightarrow \nu_i N_i$
 - Possibly measurable / detectable in precision e⁺e⁻ collisions
 - Most likely out of reach for hadron colliders (small couplings)

Where we are heading

- The LHC is still pretty much still in its childhood
- ◆ Factor ~15 more luminosity to be collected until the end of HL-LHC (~2037 !)

Exciting search programme for New Physics

- Stop: 1.5 TeV; squarks/gluinos: 3 TeV; Z': 7 TeV; etc., etc.
 - Be prepared for the unexpected !
- Important precision measurement
 - ✤ Higgs couplings to 2-5%
 - ✤ Top quark mass to 200 MeV
 - ♦ W boson to 10 MeV ?
 - Flavour physics measurements
 - Be prepared for surprises !

Why precision measurements are interesting

- Electroweak observables can be calculated / predicted with precision
 - They are sensitive to heavier particles through quantum corrections

Lessons from EW precision measurement

Mogens Dam / NBI Copenhagen

Current status of precison measurements

With m_{top}, m_w and m_H known, the Standard Model has nowhere to go

- Within current precision, direct and indirect constraints are consistent
 - No evidence for the need for BSM physics
 - * But what if measurements precisions were improved ?
- Strong incentive to significantly improve the precision of all measurements
 - * Towards being sensitive to 100 TeV new physics through quantum corrections

pp collisions vs. e⁺e⁻ collisions (1)

p	200-	► ►	
-	g	\sqrt{t}	TT
	t		П
	gunn	t	
p	- Ullin,	► ►	

p-p collisions

Proton is comp

\rightarrow Initial state

→ Limits achie

High rates of C

- → Complex tri
- \rightarrow High levels

High cross-sect

High-energy ci

e⁺ Ζ Z Η e

e⁺e⁻	col	lisio	ons

pound object not known event-by-event evable precision	 e⁺/e⁻ are point-like → Initial state well defined (<i>E</i>, <i>p</i>) → High-precision measurements
2CD backgrounds iggering schemes of radiation	 Clean experimental environment → Trigger-less readout → Low radiation levels
tions for colored-states	Superior sensitivity for electro-weak states
rcular pp colliders feasible	 At lower energies (≤ 400 GeV), circular e⁺e⁻ colliders can deliver very large luminosities. Higher energy e⁺e⁻ requires linear collider.

pp collisions vs. e⁺e⁻ collisions (2)

Mogens Dam / NBI Copenhagen

Precision requires luminosity

◆ So far, all e⁺e⁻ colliders except SLC (at SLAC) have been circular

• Over time there has been a dramatic increase in luminosity

The next e⁺e⁻ collider will be ...

Linear or Circular ?

- ♦ For > 20 years, only linear colliders on "the market": ILC, CLIC
- Why not a 500 GeV circular collider ?

Synchrotron radiation in circular machines

* Energy lost per turn grows like $\Delta E \propto \frac{1}{R} \left(\frac{E}{m} \right)$

, e.g., 3.5 GeV per turn at LEP2

Must compensate with R and accelerating cavities
 — Cost grows like E⁴ too

"Up to a centre-of-mass energy of 350 GeV at least, a circular collider with superconducting accelerating cavities is the cheapest option", Herwig Schopper
 At and above 500 GeV, a e⁺e⁻ collider can only be linear

Revival of Circular e⁺e⁻ Colliders

• Interest for circular collider projects grew up again after first LHC results

□ The Higgs boson is light – LEP2 almost made it: only moderate √s increase needed

□ There seems to be no heavy new physics below 500 GeV

* The interest of Vs = 500 GeV (and even 1 TeV) is now very much debated

□ Way out: study with unprecedented precision the Z, W, H bosons and the top quark

- Need to go up to the top-pair threshold (350+ GeV) anyway to study the top quark
- ✤ Highest possible luminosities at 91, 160, 240 and 350+ GeV are needed

Future Circular Collider Study

International FCC collaboration to study (since 2014)

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
- Ultimate goal: ≥ 100 TeV pp-collider (FCC-hh) ≥16 T magnets

 \rightarrow defining infrastructure requirements

Two possible first steps:

e⁺*e*⁻ collider (FCC-ee)

High Lumi, $E_{CM} = 90-400 \text{ GeV}$

HE-LHC: 16 T \Rightarrow 27 TeV in LEP/LHC tunnel

Possible addition

p-e (FCC-he)

Mogens Dam / NBI Copenhagen

April 2019

FCC CDRs available at

FCC integral project schedule

A little FCC-ee history:

- 2012-1013: From LEP3 to TLEP "standalone" project
- Since 2014: Official part of FCC project. In the beginning: "potential intermediate step"
- 2019: Phase 1 of "FCC Integral Project"

Fabiola Gianotti Jan. 15, 2019 Concernments Vs L /IP (cm⁻² s⁻¹) Int. L /IP(ab⁻¹) Comments

	15	L/IF (CIII-S-)	m. L/m (ab)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H	230 x10 ³⁴ 28 8.5	75 ab ⁻¹ 5 2.5	2 experiments Total ~ 15 years of
	~365 top	1.5	0.8	operation
pp FCC-hh	100 TeV	5 x 10 ³⁴ 30	2.5 ab ⁻¹ 15	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <mark>s_{NN}</mark> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
ep Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	$\sqrt{s_{eN}}$ = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

Conceptual Design Report released today!

Also studied: HE-LHC: $\sqrt{s}=27$ TeV using FCC-hh 16 T magnets in LHC tunnel; L~1.6x10³⁵ \rightarrow 15 ab⁻¹ for 20 years operation

Sequential implementation, FCC-ee followed by FCC-hh, would enable:

- □ variety of collisions (ee, pp, PbPb, eh) → impressive breadth of programme, 6++ experiments
- exploiting synergies by combining complementary physics reach and information of different colliders
 maximise indirect and direct discovery potential for new physics
- starting with technologically ready machine (FCC-ee); developing in parallel best technology (e.g. HTS magnets) for highest pp energy (100++ TeV!)
- building stepwise at each stage on existing accelerator complex and technical infrastructure

<u>Purely technical</u> schedule, assuming green light to preparation work in 2020. A 70 years programme

8 years preparation	10 years tunnel and FCC-ee construction	15 years FCC-ee operation	11 years FCC-hh preparation and installation	25 years FCC-hh operation pp/PbPb/eh
2020-2028		2038-2053		2064-2090

FCC Home

Mogens Dam / NBI Copenhagen

0.0

Lake Ger

10.0

в

5.0

С

15.0

20.0

25.0

30.0

Uppsala, Stockholm

40.0

45.0

Е

35.0

FCC-ee baseline design choices

Mogens Dam / NBI Copenhagen

EW factories: Energies and luminosities

The FCC-ee offers the largest luminosities in the 88 \rightarrow 365 GeV Vs range

Ultimate statistics/precision:

- 100 000 Z / second
 - 1 Z / second at LEP
- 10 000 W / hour
 - 20 000 W total at LEP2
- 1 500 Higgs bosons / day
 - 10 times ILC

1 500 top quarks / day in each detector

PRECISION and SENSITIVITY to rare or elusive phenomena

- Luminosity per IP down my 10% only
- Approaching a doubling of total luminosity !

The FCC-ee operation model and statistics

◆ 185 physics days / year, 75% efficiency, 10% margin on luminosity

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	and above
√s (GeV)	88, 91, 94		157, 163	240	340 - 350	365
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	25	7	0.8	1.4
Lumi/year (2 IP)	24 ab-1	48 ab-1	6 ab-1	1.7 ab ⁻¹	0.2 ab ⁻¹	0.34 ab-1
Physics goal	150 ab ⁻¹		10 ab-1	5 ab-1	0.2 ab-1	1.5 ab-1
Run time (year)	2	2	2	3	1	4

Important features for precision measurements

Statistics

- Very high statistics at the Z pole (70 kHz of visible Z decays)
- Beam-induced background are mild compared to linear colliders, but not negligible
 - Readout must be able to cope with both
 - CW running imposes constraints on detector cooling
- Luminosity measurement
 - □ Aim at 0.01% from small angle Bhabhas
 - $\boldsymbol{\ast}$ Requires $\boldsymbol{\mu}\boldsymbol{m}$ precision for LumiCal
 - ✤ Requires measurement of outgoing e[±] deflection from the opposite bunch
 - □ Need to study $e^+e^- \rightarrow \gamma\gamma$ to possibly approach 0.001%
- ♦ Vs calibration and measurement of Vs spread
 - \square 50 keV "continuous" E_{BEAM} measurement with resonant depolarization
 - Powerful cross checks from di-muon acollinearity and polarimeter/spectrometer
 - $\boldsymbol{\ast}$ Requires muon angle measurement to better than 100 $\boldsymbol{\mu} rad$
- Flavour tagging
 - □ Small beam pipe radius: Vertex detector 1st layer at 17 mm.
 - \star Impact parameter resolution: 3-5 μm (c τ = 89 μm for τ and more for Bs)
 - ♦ New CEPC studies claim Purity × Efficiency ~ 97% for H \rightarrow bb. Ongoing studies for FCC-ee

Interaction Region Layout (MDI)

• Unique and flexible design at all energies

□ L* = 2.2 m

- * Acceptance: 100 mrad
- Solenoid compensation scheme
 - Reduce ε_y blow-up \Rightarrow B_{Detector} \leq 2T
- 🛛 Beam pipe
 - Warm, liquid cooled (~SuperKEKB)
 - ✤ Be in central region, then Cu
 - R = 15 mm in central region
 - 1st vertex detector layer 17 mm from IP
 - SR masks, W shielding
- Mechanical design and assembly concept
 - Under engineering study

Luminosity Measurement

Ambitious goal:

- Absolute to 10⁻⁴
- Relative (energy-to-energy point) to 10⁻⁵

Small angle Bhabha scattering. Very strongly forward peaked

Monitors centered around outgoing beam line -- micron level precision needed

- Backgrounds: have been studied and seem to be under control Only "incoherent pair production" starts to pop up at tt energies
- Electromagnetic focussing of Bhabhas (similar to "pinch effect") \Box average focussing of 30 µrad: 15 × 10⁻⁴ effect on acceptance □ under study...

arXiv:1812.010041

FCC-ee Detector Design Concepts

- Two designs studied so far
 - Has been demonstrated that detectors satisfying the requirements are feasible
 - Physics performance, invasive MDI, beam backgrounds
- Next: more complete studies, with full simulation
 - Towards 4 detector proposals by ~2026
 - * Light, granular, fast, b and c tagging, lepton ID and resolutions, hadron ID
 - ✤ Cost effective
 - Satisfy constraints from interaction region layout

FCC-ee as a Higgs factory

◆ Higgsstrahlung (e⁺e⁻ → ZH) event rate largest at √s ~ 240 GeV : σ ~ 200 fb
 □ 10⁶ e⁺e⁻ → ZH events with 5 ab⁻¹; cross section predicted with great accuracy
 ◆ Target : (few) per-mille precision, statistics-limited

Complemented with 200k events at √s = 350 - 365 GeV
 □ Of which 30% in the WW fusion channel (important for the Γ_H precision)

Precision Higgs physics – Which precison ?

 Higgs couplings will be measured at the few percent level at the the end of HL-LHC

 Is this precision good enough to make a "discovery" ?

Collider	HL-LHC
$\delta g_{HZZ} / g_{HZZ}$ (%)	1.3
$\delta g_{HWW} / g_{HWW}$ (%)	1.4
$\delta g_{Hbb}/g_{Hbb}$ (%)	2.9
$\delta g_{Hcc}/g_{Hcc}$ (%)	SM
$\delta g_{Hgg}/g_{Hgg}$ (%)	1.8
$\delta g_{H\tau\tau}/g_{H\tau\tau}$ (%)	1.7
δg _{Hµµ} /g _{Hµµ} (%)	4.4
$\delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$ (%)	1.6
$\delta g_{Htt}/g_{Htt}$ (%)	2.5

Higgs couplings sensitive to New Physics (NP)

Expected deviations from SM coupling strengths depend on NP scale.

		Model	κ_V	κ_b	κ_{γ}
$\left(1 - 1\right)^2$		Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$\frac{g_{HXX}}{g_{HXX}} \approx 1 + \delta \chi \left(\frac{1 \text{ TeV}}{1 \text{ TeV}}\right)$	with δ =	2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
$\left[\frac{g_{\mu\nu\nu}^{SM}}{g_{\mu\nu\nu}} \sim 1 + 0 \times \left(\frac{\Lambda_{ND}}{\Lambda_{ND}} \right) \right]$		Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
		Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
		Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

• Need a minimum of ~1% precision on couplings for a 5 σ discovery if Λ_{NP} = 1 TeV

a And better for heavier New Physics

Higgs: Absolute couplings and width

- \Box Total rate $\propto g_{HZZ}^2$
- \Box ZH \rightarrow ZZZ final state $\propto g_{HZZ}^4 / \Gamma_H$
- \rightarrow measure g_{HZZ} to 0.2%
- \rightarrow measure $\Gamma_{\rm H}$ to a couple %
- \Box ZH \rightarrow ZXX final state $\propto g_{HXX}^2 g_{HZZ}^2 / \Gamma_H \rightarrow$ measure g_{HXX} to a few per-mil / per-cent
- **Empty recoil =** invisible Higgs width; Funny recoil = exotic Higgs decays
- Note: The HL-LHC is a great Higgs factory (10⁹ Higgs produced) but ...
 - $\Box \sigma_{i \rightarrow f}^{(observed)} \propto \sigma_{prod} (g_{Hi})^2 (g_{Hf})^2 / \Gamma_H$
 - * Difficult to extract the couplings : σ_{prod} is uncertain and Γ_{H} is largely unknown
 - Must do physics with ratios or with additional assumptions

• Relative precisions for HL-LHC and the FCC-ee

Collider	HL-LHC		FCC-ee		Ī
Luminosity (ab-1)	3	5 @ 240GeV	+1.5 @ 365GeV	+HL-LHC	I
Years	25	3	+4	-	I
$\delta\Gamma_{H}/\Gamma_{H}$ (%)	SM	2.7	1.3	1.1	I
$\delta g_{HZZ} / g_{HZZ} (\%)$	1.3	0.2	0.17	0.16	T
$\delta g_{HWW}/g_{HWW}$ (%)	1.4	1.3	0.43	0.40	T
$\delta g_{Hbb}/g_{Hbb}$ (%)	2.9	1.3	0.61	0.55	
$\delta g_{Hcc}/g_{Hcc}$ (%)	SM	1.7	1.21	1.18	
$\delta g_{Hgg}/g_{Hgg}$ (%)	1.8	1.6	1.01	0.83	
$\delta g_{H\tau\tau}/g_{H\tau\tau}$ (%)	1.7	1.4	0.74	0.64	
$\delta g_{H\mu\mu}/g_{H\mu\mu}$ (%)	4.4	10.1	9.0	3.9	
$\delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$ (%)	1.6	4.8	3.9	1.1	
$\delta g_{Htt}/g_{Htt}$ (%)	2.5	_	-	2.4	Model-independen
BR _{EXO} (%)	SM (0.0)	<1.2	<1.0	<1.0	I

□ FCC-ee precision better than HL-LHC by sizable factors (copious modes)

- With no need for additional assumptions
- □ It is important to have two energy points (240 and 365 GeV)
 - Combination better by a factor 2 (4) than 240 (365) GeV alone
- \square (HL-)LHC measures the σ_{ttH} , but requires assumptions for the g_{Htt}

Absolute g_{Htt} measurement in a combination with FCC-ee (precision: 2.4%)

Higgs self-coupling at FCC-ee

- FCC-ee does not produce Higgs pairs, from which self coupling can be extracted
- But, loops including Higgs self coupling contribute to Higgs production

• Effect of Higgs self coupling (κ_{λ}) on σ_{zH} and σ_{vvH} depends on vs

C. Grojean et al. <u>arXiv:1711.03978</u>

A. Blondel, P. Janot

arXiv:1809.10041

M. McCullough

arXiv:1312.3322

- \square Two energy points (240 and 365 GeV) lift off the degeneracy between $\delta\kappa_z$ and $\delta\kappa_\lambda$
 - $\boldsymbol{\ast}$ Precision on κ_{λ} with 2 IPs at the end of the FCC-ee (91+160+240+365 GeV)
 - Global EFT fit (model-independent) : ±34% (3σ) ; in the SM : ±12%
 - Precision on κ_{λ} with 4 IPs : ±21% (EFT fit) (5 σ) ; ±9% (SM fit)
 - 5σ discovery with 4 IPs instead of 2 (much less costly than 500 GeV upgrade)

Higgs Measurements – Discovery Potential

 Evaluate discovery potential for New Physics via a Standard Model Effective Field Theory (SMEFT) fit

□ Expressed in terms of coefficients of dim-6 operators: "interaction scale"

Precision electroweak physics

• Reminder: The FCC-ee goals in numbers

√s (GeV)	90 (Z)	160 (WW)	240 (HZ)	350 (tt)	365 (WW→H)
# years	4	2	3		5
Events@FCCee	5 × 10 ¹²	10 ⁸	10 ⁶	10 ⁶	45,000

♦ FCC-ee is the ultimate Z, W, Higgs and top factory

□ 10⁵ times more Zs and 10³ times more Ws than LEP1 and LEP2

- ✤ Potential statistical accuracies are mind-boggling !
- With 200 times smaller statistical precision than at LEP, it is hard to predict accuracies

□ For now, conservatively, use LEP experience for systematics

Example: The uncertainty on E_{BEAM} (2 MeV) was the dominant uncertainty on m_z, Γ_z
 Can we do significantly better at FCC-ee ?

Beam Polarization and Energy Calibration

• Simulation show transverse polarization at the Z (wigglers) and WW energies

Energy calibration by resonant depolarization every 10 mins on pilot bunches
 * UNIQUE TO CIRCULAR COLLIDERS

One million dimuon events

* Total \sqrt{s} uncertainty of **100 keV** (a) Z pole, and **300 keV** at the WW threshold

stents 10⁵ Spread (no BS) Energy spread (~100 MeV) will be measured Spread (BS) $\sigma_{e_{1}} = 0.1 \text{ mrad}$ With ISB □ From e⁺e⁻ → $\mu^+\mu^-$ longitudinal boost Asymmetry = ± 0.1 10^{4} ✤ 10⁶ events every 4 mins @ Z pole • Continuous 35 keV precision on $\delta\sqrt{s}$ 10^{3} ♦ Also measures $\Delta E = E^+ - E^-$ to similar precision 10^{2}_{-5} -2 -3 0 -4 _1 з Longitudinal Boost, x

Precision Electroweak Measurements (i)

Boils down to measuring cross sections and asymmetries

□ The dominant experimental uncertainties (still) come from the beam energy knowledge

Precision Electroweak Measurements (ii)

EW precision measurements at FCC-ee (see arXiv:1308.6176 and CDR)

Sample of EW observables, experimental precisions

	Observable	Measurement	Current precision	FCC-ee stat.	FCC-ee <mark>syst.</mark>	Dominant exp. error
Î	m _z (keV)	Z Lineshape	91187500 ± 2100	5	< 100	Beam energy
	$\Gamma_{\sf Z}$ (MeV)	Z Lineshape	2495200 ± 2300	8	< 100	Beam energy
 	R ₁ (×10 ³)	Z Peak ($\Gamma_{\sf had}/\Gamma_{\sf lep}$)	20767 ± 25	0.06	0.2 - 1	Detector acceptance
z po	R _b (×10 ⁶)	Z Peak ($\Gamma_{\rm bb}/\Gamma_{\rm had}$)	216290 ± 660	0.3	< 60	$g \rightarrow bb$
Î	Ν _ν (×10³)	Z Peak (σ_{had})	2984 ± 8	0.005	1	Lumi measurement
	$sin^2 \theta_W^{eff}$ (×10 ⁶)	A _{FB} ^{μμ} (peak)	231480 ± 160	3	2 - 5	Beam energy
	1/α _{QED} (m _Z) (×10 ³)	$A_{FB}^{\mu\mu}$ (off-peak)	128952 ± 14	4	<1	Beam energy
•	$lpha_{s}(m_{Z})$ (×10 ⁴)	R _i	1196 ± 30	0.1	0.4 – 1.6	Same as R _I
sh.	m _w (MeV)	WW Threshold scan	80385 ± 15	0.6	0.3	Beam energy
thre	$\Gamma_{ m W}$ (MeV)	WW Threshold scan	2085 ± 42	1.5	0.3	Beam energy
N-	Ν _ν (×10 ³)	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, II$	2920 ± 50	0.8	small	?
8	α _s (m _W) (×10 ⁴)	$B_I = (\Gamma_had / \Gamma_lep)_W$	1170 ± 420	2	small	CKM Matrix
÷	m _{top} (MeV)	Top Threshold scan	173340 ± 760 ± 500	17	< 40	QCD corr.
resł	Γ_{top} (MeV)	Top Threshold scan	?	45	< 40	QCD corr.
t	λ_{top}	Top Threshold scan	μ = 1.28 ± 0.25	0.10	< 0.05	QCD corr.
τ	ttZ couplings	√s = 365 GeV	± 30%	0.5 - 1.5%	< 2%	QCD corr

Mogens Dam / NBI Copenhagen

Combination of EW measurements

• With m_{top}, m_H and m_W known, the standard model has nowhere to go

Precision of theory predictions needs to improve for full sensitivity to new physics
 * higher order calculations needed

Mogens Dam / NBI Copenhagen

EW Measurements – Discovery Potential

 Evaluate discovery potential for New Physics via Standard Model Effective Field Theory (SMEFT) fit

□ Expressed in terms of coefficients (*interaction scale*) in front of dim-6 operators

* Here, no improvements in theory uncertainties assumed (see next page)

Precision \Leftrightarrow Discovery ?

♦ Combining precision Higgs and EW measurements in SMEFT

 \Box Higgs and EWPO measurements are well complementary (b,c, τ PO to be added)

- □ EWPO are more sensitive to heavy new physics (up to 50-70 TeV)
 - ✤ Sensitivity was at the level of up to ~5 TeV at LEP
- □ Larger statistics pays off for Higgs measurements (4 IPs ?)
- **□** Further improvement in theory predictions pays off for EWPO measurements

Precision of theory predictions

- Improving the precision of EW and QCD calculations for the FCC-ee
 - □ Is a great challenge (exponentially growing number of diagrams with # loops)
 - Has discovery potential (see previous slide)
 - Is therefore recognized as strategic

* Included in the FCC-ee CDR volume as a target for "Strategic R&D"

- First workshop on "Methods and tools" in January 2018
 - 33 participants
 - Produced a 250+ pages proceedings !
 - Conclusion of the workshop
 - * We cannot promise, but yes, we can do it !
 - Requires ~500 person-year over the next 20 years
- Workshop series continued in January 2019
 - **D** Topics covered the whole FCC-ee programme, 106 registered participants
 - * Z, W, Higgs, top, b, c, QED, Monte Carlo, software, and detector technologies

Standard Model theory for the FCC-ee (2018) J. Gluza et al., <u>https://arxiv.org/abs/1809.01830</u>

Composite Higgs ?

√s [GeV]

Discover right-handed neutrinos

□ vMSM : Complete particle spectrum with the missing three right-handed neutrinos

* Could explain everything: Dark matter (N₁), Baryon asymmetry, Neutrino masses

Discover the dark sector

□ A very-weakly-coupled window to the dark sector is through light "Axion-Like Particles" (ALPs)

✤ Orders of magnitude of parameter space accessible at FCC-ee

Heavy Flavour

◆ Z run ⇒ 10¹² bb events, 1.7×10¹¹ τ⁺τ⁻ events (significantly more than Bellell)
 □ Higher energy, higher boost ⇒ better e/μ/π separation
 □ lifetime, branching fractions, rare decays, test of Universality

Table 7.1: Expected production yields of heavy-flavoured particles at Belle II (50 ab^{-1}) and FCC-ee.

Particle production (10^9)	$\operatorname{B}^0/\operatorname{\overline{B}}^0$	B^{+} / B^{-}	B^0_s / $\operatorname{\overline{B}}^0_{\operatorname{s}}$	Λ_b / $\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+\tau^-$
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	1000	1000	250	250	550	170

Study of B decays and test of flavour universality §

Decay mode	$\mathrm{B}^{0} \rightarrow \mathrm{K}^{*}(892)\mathrm{e}^{+}\mathrm{e}^{-}$	$B^0 \to K^*(892)\tau^+\tau^-$	$\mathrm{B}_{\mathrm{s}}(\mathrm{B}^0) \to \!$
Belle II	$\sim 2\ 000$	~ 10	n/a (5)
LHCb Run I	150	-	\sim 15 (–)
LHCb Upgrade	~ 5000	-	$\sim 500~(50)$
FCC-ee	~ 200000	~ 1000	$\sim \! 1000 \ (100)$

J.F. Kamenik et al.

au physics

au properties and Universality

- τ branching fractions and lifetime provide strong test of Universality of the α - ν_{α} CC coupling, α = e, μ , τ
 - Sensitive to light-heavy neutrino mixing
 - Need also (more) precise mass measurement

$Z \to \tau^+ \tau^-$	1.3 X 10 ¹¹
1 vs. 3 prongs	3.2 X 10 ¹⁰
3 vs. 3 prong	2.8x 10 ⁹
1 vs. 5 prong	2.1 X 10 ⁸
1 vs. 7 prong	< 67,000
1 vs o prong	?

3 X 10¹²

Visible Z decays

au physics

 Improve sensitivity of lepton flavour violation Z decays by 4 orders of magnitude

 Improve sensitivity of lepton flavour violation τ decays by 1-2 orders of magnitude

Decay	Present bound	FCC-ee sensitivity
$Z \rightarrow \mu e$	$0.75 imes 10^{-6}$	$10^{-10} - 10^{-8}$
$Z \rightarrow \tau \mu$	12×10^{-6}	10^{-9}
$Z \rightarrow \tau e$	9.8×10^{-6}	10^{-9}
$\tau \rightarrow \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$\tau \rightarrow 3\mu$	2.1×10^{-8}	10 ⁻¹⁰

M.Dam	
<u>arXiv</u> :1811.09408	

FCC-ee is not only a Z, WW, Higgs and tt factory. But also a factory of heavy flavour: b, τ ,...

Mogens Dam / NBI Copenhagen

And if there is time ...

• Spend few years at $\sqrt{s} = 125.09$ GeV with high luminosity

 \square For s-channel production $e^+e^- \rightarrow H$ (a la muon collider, with 10⁴ higher lumi)

FCC-ee monochromatization setups

- Default: $\delta\sqrt{s} = 100 \text{ MeV}$, 25 ab⁻¹/year
 - No visible resonance
- Option 1: $\delta\sqrt{s}$ = 10 MeV, 7 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 100 \text{ ab}$
- Option 2: $\delta\sqrt{s} = 6 \text{ MeV}$, 2 ab⁻¹/year
 - $\sigma(e^+e^- \rightarrow H) \sim 250 \text{ ab}$
- Backgrounds much larger than signal
 - $e^+e^- \rightarrow q\overline{q}, \tau\tau, WW^*, ZZ^*, \gamma\gamma, ...$

\Box Expected signal significance of ~0.4 σ / \sqrt{y} ear in both option 1 and option 2

- * Set a electron Yukawa coupling upper limit : κ_{e} < 2.5 @ 95% C.L.
- Reaches SM sensitivity after five years (or 2.5 years with 4 IPs)

D. d'Enterria <u>arXiV:1701.02663</u>

Unique opportunity to constrain first generation Yukawa's

Summary: FCC-ee physics potential (excerpt)

- ◆ EXPLORE the 10-100 TeV energy scale
 - □ With precision measurements of the properties of the Z, W, Higgs, and top particles
 - Up to 20-50-fold improved precision on ALL electroweak observables (EWPO)
 - m_z , m_W , m_{top} , Γ_z , $sin^2 \theta_w^{eff}$, R_b , $\alpha_{QED}(m_z)$, $\alpha_s(m_z, m_W, m_\tau)$, top EW couplings ...
 - * Up to 10-fold more precise and model-independent Higgs couplings measurements
- DISCOVER that the Standard Model does not fit

DIAMESTICS Pattern of deviations may point to the source.

DISCOVER a violation of flavour conservation / universality

□ Examples: $Z \rightarrow \tau \mu$ in 5×10¹² Z decays; or $\tau \rightarrow \mu \gamma / \tau \rightarrow e \gamma$ in 2 × 10¹¹ τ decays; ...

□ Also $B^0 \rightarrow K^{*0}\tau^+\tau^-$ or $B_S \rightarrow \tau^+\tau^-$ in 10¹² bb events

DISCOVER dark matter as invisible decays of Higgs or Z

Precise invisible width measurements

DIRECT DISCOVERY of very-weakly-coupled particles

□ in the 5-100 GeV mass range, such as right-handed neutrinos, dark photons, ALPs, ...

Motivated by all measurements / searches at colliders (SM and "nothing else")

All 4 phases of the FCC-ee programme, Z, WW, H, and tt, are important for the physics potential

arXiv:1512.05544 arXiv:1603.06501 arXiv:1503.01325

The FCC CDR, released on 15/01/2019, demonstrates that:

- The FCC-ee design is robust and mature
 - accelerator with record luminosity performance at all four energy points (Z, WW, H, tt) and with moderate background levels
 - DI Including luminosity monitors
 - two detector designs (to be extended to four)
- With its 4 energy points, FCC-ee has an outstanding physics reach
 as summarized on the previous slide
- FCC-ee and FCC-hh are highly synenergetic and complementary
 - \Box The sequential implementation : FCC-ee \rightarrow FCC-hh maximises the physics reach
 - □ FCC can serve High-Energy Physics in a cost effective manner throughout this century

FCC-ee can start seamlessly at the end of HL-LHC

Base the next generation of colliders on a proven model

◆ 27 km tunnel

• The next step: 100 km tunnel

Extra Slides

The FCC CDR

First ideas in 2010-11. Study kicked off in 2014

CDR published on 15/01/2019 at http://fcc-cdr.web.cern.ch/ (>1000 authors)

Vol.1 : Physics Opportunities Vol.2 : The lepton collider (FCC-ee) Vol.3 : The hadron collider (FCC-hh) (includes e-h option) Vol.4: HE-LHC

Common ~100 km infrastructure @ CERN

Civil engineering, electricity, cooling, ventilation, cryogenics R&D for SC magnets (up to highest affordable field) Staged approach for collider and physics 1^{st} step: high-luminosity and precision e+e- collider (FCC-ee) Phase A: $88 \rightarrow 240$ GeV (Z, W, Higgs) Phase B: $345 \rightarrow 365$ GeV (Higgs, top) (significant RF upgrade) 2^{nd} step: high-energy pp collider (FCC-hh, 100-150 TeV?) e-p option (FCC-eh)

At least 60 years of the most sensitive and versatile search for solutions to the mysteries of Universe (BAU, Dark matter, Neutrino masses, Flavour etc.)

Baseline parameters

parameter	FCC-ee				LEP2
energy/beam [GeV]	45	80	120	182.5	105
bunches/beam	16640	2000	328	48	4
beam current [mA]	1390	147	29	5.4	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.5	0.0012
energy loss/turn [GeV]	0.036	0.34	1.72	9.2	3.34
total synchrotron power [MW]		100			
RF voltage [GV]	0.1	0.75	2.0	4+6.9	3.5
rms bunch length (SR,+BS) [mm]	3.5, 12	3.0, 6,0	3.2, 5.3	2.0, 2.5	12, 12
rms emittance $\epsilon_{x,y}$ [nm, pm]	0.3, 1.0	0.8, 1.7	0.6, 1.3	1.5, 2.9	22, 250
longit. damping time [turns]	1273	236	70	20	31
crossing angle [mrad]	30				0
beam lifetime (rad.B+BS) [min]	68	48	12	12	434

FCC-ee: 2 separate rings

LEP: Single beam pipe

Power consumption

Polarisation and energy calibration

Z pole with polarisation wigglers E. Gianfelice-Wendt orbit correction + harmonic bumps 100 100 Linear SITROS luminosity-averaged Polarization [%] 80 80 60 60 centre-of-mass 40 40 20 20 uncertainties: Linear 0 0 102.8 102.8 103 102 102.6 103 100 a*y WW threshold ~100 keV around the Z + harmonic bumps orbit correction pole 100 100 Linear Linear SITROS SITROS Polarization [%] 80 80 60 60 ~300 keV at the W pair 40 40 20 20 threshold 0 0 187.8 187.6 187.8 182 187.2 18, 18, 180 a*y C=97.75 km, 45.59 GeV, Q s=0.025, $\sigma \delta$ =0.00038, w=1*10^-4, ε =0.5*10^-8 simulated Vertical Polarization frequency technique

Mogens Dam / NBI Cor

- 0.002

- 0.0015

- 0.001

- 0.0005

0

Flipper frequency detuning: $\nu - \gamma a$

0.0005

0.001

0.0015

sweep with

depolariser

Polarization [%]

Polarization [%]

0.002

used at LEP

Efficient masking against synchrotron radiation

	Energy (GeV)	Critical energy (keV)	number of bunches	Current (mA)	Incident γ/xing (500μm from tip)	Incoming on central pipe/xing	γ rate on central pipe (Hz)
tt+	182.5	113.4	33	5.41	3.32E+09	1195	1.18E+08
tt	175	100	40	6.4	3.06E+09	1040	1.25E+08
h	125	36.4	328	29	1.05E+09	10.3	1.01E+07
W	80	9.56	1300	147	6.11E+08	0.18	7.02E+05
Z	45.6	1.77	16640	1390	9.62E+07	1.92E-04	9.58E+03

rate of photons that strike the central pipe that come from the mask tip

- No SR from dipoles or from quads hits directly the central beam pipe (cylinder +/- 12.5 cm long, 1.5 cm radius)
- Non-Gaussian beam tails, considered out to +/-20 σ_x and +/-60 σ_y
- On-axis beam
- Quadrupole radiation that may strike mask surfaces included

Mogens Dam / NBI Copenhagen

Uppsala, Stockholm

Precision electroweak physics at FCC-ee (2)

Measurement of the beam energy at LEP

 \Box Ultra-precise measurement unique to circular colliders (crucial for m_z, Γ_z)

Precision electroweak physics at FCC-ee (3)

Measurement of the beam energy at LEP (cont'd)

□ The spin precesses around *B* with a frequency proportional to *B* (Larmor precession) \Rightarrow Hence, the number of revolutions v_s for each LEP turn is proportional to $\int BdI$

- □ LEP was colliding 4 bunches of e⁺ and e⁻; FCC-ee will have 1,000's of bunches
 - Use ~10 "single" bunches to measure E_{BEAM} with resonant depolarization
 - Each measurement gives 100 keV precision, with no extrapolation uncertainty

Precision electroweak physics at FCC-ee (12)

- ◆ The predictions of m_{top}, m_W, m_H, sin²θ_W have theoretical uncertainties
 Which may cancel the sensitivity to new physics
- \bullet For m_W and $sin^2\theta_W$ today, these uncertainties are as follows

Parametric uncertainties and missing higher orders in theoretical calculations:

- * Are of the same order
- Smaller than experimental uncertainties

Precision electroweak physics at FCC-ee (13)

- ◆ Most of the parametric uncertainties will reduce at the FCC-ee
 - New generation of theoretical calculations is necessary to gain a factor 10 in precison
 - To match the precision of the direct FCC-ee measuremeths

□ Will require calculations up to three or four loops to gain an order of magnitude

- Might need a new paradigm in the actual computing methods
 - Lots of interesting work for future generations of theorists (you?)

Precision electroweak physics at FCC-ee (8)

- Combination of all precision electroweak measurements
 - \square FCC-ee precision allows $m_{top},\,m_W,\,sin^2\theta_W$ to be predicted within the SM
 - * ... and to be compared to the direct measurements

□ New Physics ?

* Direct measts (blue ellipse) and indirect constraints (red ellipse) may or may not overlap

The trilinear Higgs self-coupling κ_{λ} [1]

• Traditionally κ_{λ} is measured with a c.o.m. energy of at least 500 GeV.

• At the FCC-ee, a different method can be used with single Higgs production

- With respect to exp'tal precision on $\sigma_{\rm HZ}$
- ~12% exclusive precision on κ_{λ} with 2 IPs
 - Reduced to 9% with a 4 IP scenario
 - If all other couplings are fixed to their SM values

M. McCullough