ATLAS jet triggers and trigger-level analysis

Will Kalderon, Lund University Uppsala, 24.04.19 WHEN TWO APPLES COLLIDE, THEY CAN BRIEFLY FORM EXOTIC NEW FRUIT. PINEAPPLES WITH APPLE SKIN. POMEGRANATES FULL OF GRAPES. WATERMELON-SIZED PEACHES.

THESE NORMALLY DECAY INTO A SHOWER OF FRUIT SALAD, BUT BY STUDYING THE DEBRIS, WE CAN LEARN WHAT WAS PRODUCED.

THEN, THE HUNT IS ON FOR A STABLE FORM.

https://xkcd.com/1949/

ATLAS vs a smartphone

https://arxiv.org/abs/1303.7367

- Can't record everything: capabilities of readout electronics, enormous storage
- Solution: prime for readiness, press the shutter button during an interesting event

When to press the shutter button?

• Some things don't linger very long

Big blue sea

https://www.youtube.com/watch?v=H2zLvWeyiJY

- When will something interesting happen?
- How to record something after it's happened?

Memory and pipelines

Internal memory: space for N frames

"one in, one out" pipeline memory

Something happened! Record the past N frames

High-speed photography

Le détecteur ATLAS, situé sous la salle de contrôle, fonctionne comme un appareil photo géant, qui photographie les collisions.

https://videos.cern.ch/record/2033743

Similar across HEP

Method

Target material volume

Put it somewhere where interesting things might happen

Where do backgrounds come from?

How to mitigate?

Trigger records:

What to trigger on?

Direct DM Detection

Target material volume

Method

Xe tank

Put it somewhere where interesting things might happen

Anywhere :-)

Where do backgrounds come from?

The sky / radioactive things

How to mitigate?

put underground and shield

Trigger records:

~everything that happens

What to trigger on?

Method	Direct DM Detection	Collider experiment	
Target material volume	Xe tank	Ar / Fe in calorimeters	
Put it somewhere where interesting things might happen	Anywhere :-)	Near colliding LHC beams The colliding LHC beams	
Where do backgrounds come from?	The sky / radioactive things		
How to mitigate?	put underground and shield	"boring" QCD tends to give low-p⊤ jets	
Trigger records:	~everything that happens	only high-p⊤ events	

ATLAS trigger system 30 MHz L1 100 kHz HLT 1 kHz Recorded

- Read out close to full detector information from pipelines
- Large computer farm to reconstruct 'objects' (electrons, muons, jets, photons) in ≤ 1 s (on average)

- Total selected rate limited to ~ 1000 Hz by offline storage
- Precision of reconstruction limited by available CPU in the HLT farm
- ATLAS as a whole decides priorities for data recording: do we want lower momentum electrons, or more events with missing transverse momentum?

 Steep drop-off in rate with pT -> choosing higher threshold reduces trigger rate

- Steep drop-off in rate with pT -> choosing higher threshold reduces trigger rate
- HLT != offline (what we usually analyse) -> smear
- Usually only use events above 95 or 99% efficiency -> can "waste" a fairly high fraction of events

1800

Offline spectrum with trigger

0.8

0.6

0.4

0.2

300

- 1600 all offline jets offline jets passing j150 1400 trigger selection j150 turnon 1200 99% eff = 172 GeV useful rate = 64 %1000 wasted rate = 36 % 800 600 400 200 0∟ 100 160 180 220 280 120 140 200 240 260 lead jet p_
- But, if I improve the ulletresolution, then...
 - The turnon will sharpen

Offline spectrum with trigger

- So, if I improve the resolution, then...
 - The turnon will sharpen
 - The recorded spectrum will match better

Offline spectrum with trigger

- So, if I improve the resolution, then...
 - The turnon will sharpen
 - The recorded spectrum will match better
 - The 99% eff. point moves left

Offline spectrum with trigger

- So, if I improve the resolution, then...
 - The turnon will sharpen
 - The recorded spectrum will match better
 - The 99% eff. point moves left
 - More useful rate :-)

- The total rate may increase or decrease
 - Depends on shape of resolution before and after, and p_T spectrum
 - May have to shift trigger threshold to get equal rate as before (but guaranteed to have more useful rate either way)

Pileup -> low-E deposits ~ isotropically distributed

Sum up energy to get an average pileup density, ρ

Subtract ρ^*A , the area of the jet

Pileup -> low-E deposits ~ isotropically distributed

Sum up energy to get an average pileup density, ρ

Subtract ρ^*A , the area of the jet

This isn't perfect, so fix the dependence on the number of pp collisions:

- that happened in this event
- That are happening on average at that moment

Simulate collisions and jets: if I have a quark or gluon of a given pT in a given position, what will ATLAS measure?

Gluon jets tend to be wider since they radiate more -> behave slightly differently, want to correct for this

26

 Start with offline calibration chain

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)

Status in 2015 and 2016 data

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)
- Also: no tracks!
 - very CPU intensive in ATLAS trigger -> infeasible to run full tracking

Status in 2017 and 2018 data

- New in 2017
 - Apply partial GSC and in-situ calibrations to all trigger jets
 - Some HLT tracking in jets is possible within CPU constraints can apply GSC to some trigger jets

Jet trigger over run 2

- Update calibration to catch up with offline developments
- Use limited tracking available at the HLT (for b-tagging) to further improve calibration

Jet trigger over run 2

year	L / 10 ³⁴ cm ⁻² s ⁻¹	jet p⊤ threhsold	single jet trigger rate	offline turnon
2015	0.5	260	18	400
2016	1.2	380	38	420
2017 & 18	1.7	420	33	435

What to do with my jet triggers?

- ATLAS collected lots of data in run 2
- A decent fraction was from jet triggers (~15%)
- What do we do with it?

One thing: Dark Matter

We think this happens...

... so these might too?

		Electromagnetic	X
???	=	Strong	X
		Weak-strength	?

How to search for them

How to search for them

How do I search for nothing?

Option 1: require something to happen!

Option 2: dark matter? What dark matter?

If there is a mediator that couples to quarks and DM...

... then we can forget about the DM and look for the mediator

One of many things: dijet resonance search

Bump hunting

- QCD is hard...
- BUT also smooth :-)
- It is hard to predict exactly what shape the background should have, but we don't need to - fit to functional forms partly ad-hoc, partly inspired by QCD
- p-value < 0.05 => there is something there with 95% confidence
- p-value > 0.05 => there is not something there

Functional form

$$f(x) = p_1(1-x)^{p_2} x^{p_3}$$

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x}$$

$$f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x*p_5 \ln x^2}$$

$$f(x) = \frac{p_1}{x^{p_2}} e^{-p_3 x - p_4 x^2}$$

Dijet search limits

What limits these searches?

Limits on the limits: stat precision

Limits on the limits, spectrum endpoint

amount of data

- run out of events at top end of spectrum
- need to fit beyond signal to be sensitive
- => can't set limits beyond a certain point

Limits on the limits: m_{jj} resolution

Good resolution

Bad resolution

Bad resolution: signal smears out, covers wider m_{jj} range, trying to extract same number of signal events from more background events

Limits on the limits, spectrum start

what causes this?

- aside from 20.3 fb⁻¹ line, creeping to the right...
- Increase in trigger thresholds

Limits on the limits, summary

- Statistical precision
 - Collect more data
 - Rapidly diminishing returns, g_q
 limit ~ ∫L^{1/4}
 - Have a bit of a wait now!
- Spectrum endpoint
 - See above
- m_{jj} offline-truth resolution
 - We're working on it :-)
- Trigger thresholds -> offline jet p_T selection
 - Improved performance mitigates, but isn't going to help enough

Need a new approach!

1: borrow tricks

1: borrow tricks

Dijet + ISR variants

- ISR: jet or photon
 - jet: more frequent $(\alpha_{QCD} > \alpha_{EM})$
 - photon: trigger thresholds lower
 - jet: combinatorics cause loss of acceptance (is ISR always lead jet?)

- What happens to the recoiling system?
 - Higher mass Z' -> qq hadrons resolved -> two small-radius jets
 - Lower mass Z' -> qq hadrons merge -> one large-radius jet

Still have a gap

0.5 ۵ CMS large-R jet + ISR 0.45 ATLAS large-*R* jet + ISR ATLAS dijet + ISR (γ) ATLAS dijet + ISR (jet) 0.4 pre-LHC 0.35 CMS dijet ATLAS dijet 0.3 0.25 0.2 • Still struggle to 0.15 improve things 0.1 between 500 and 0.05 1500 GeV 0 1 1 1 200 300 100 1000 2000 50 m_{7'} [GeV]

Need another new idea

Revisit limitations

Revisit limitations

Opportunity

- Now with L1 and HLT turnons on the same x axis scale
- Every event in the green shaded region (~200 440 GeV) has full HLT jet reconstruction, but is thrown away because we don't have space to store the full event
- Taking inspiration from LHCb and CMS: record partial events

"Trigger-Level Analysis"

- Store only HLT jet 4vectors and some summary info
 tiny event size
 (0.5% of full size)
- Allows all events passing unprescaled L1_J100 to be recorded to disk
- Very large event rate, tiny bandwidth impact

Out of sight: confused shift leader

Do not press this

The payoff

Downside: too much data!

Statistical precision of calibration dataset << statistical precision of TLA dataset

Custom "in-situ" step to ensure smoothness -

statistical fluctuation in normal spline-based combination leads to bump in p_T and hence m_{jj}

Problem 2: no tracks

TLA trigger jet calibration

Fitting

- Very large number of events -> very little scope for QCD to deviate from functional form
- Could not fit whole mjj range with a single parameterisation
- Solution: fit subranges

End result

- Similar sensitivity to conventional dijet resonance search at 1.5 TeV
- Can go much lower in m_{Z'}
 - 450-700 GeV using dedicated signal region with L1_J75 for some of 2016

End result

arxiv: 1903.01400

Rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill

Rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill
- Can be used for extra TLA triggers (increase random accept rate of lower-threshold L1 triggers and write them out)

Rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill
- Can be used for extra TLA triggers (increase random accept rate of lower-threshold L1 triggers and write them out)

Beyond

- Various trigger hardware and software improvements under development and installation: FTK, e/j/gFex, NSW
- Will likely run at higher instantaneous luminosity on average than in run 2
- Storage pressures will remain and likely worsen
- Run 2 was the "proof of concept", Run 3 can be "full commissioning" (with a large helping of interesting physics!) to prepare for the stepchange of Run 4 when radical solutions might be necessary

White paper

- Details on future outlook to be found in <u>ATL-DAQ-PUB-2017-003</u>, a complement to the <u>HEP Community White Paper on Software trigger and event reconstruction</u>
- <u>New L1 hardware</u> (jFex, gFex)
 - Expect improved L1 performance -> lower rate for TLAs
 - Possibility for TLAs to be performed with L1 objects histograms filled at 30 MHz!
- New "L1.5" hardware (FTK (run 3), HTT and HGTD (beyond))
 - Tracking or timing information for the majority of trigger jets -> pile-up suppression and reduction of quark/gluon response differences
 - Potential to expand TLA beyond jets for dijet resonance searches (do more with jets, record more than just jets)
- Some possibilities to do some jet calibration with TLAs
 - Improved HLT calibration, equalising the response of central and forward jets

Summary

- Trigger systems are a crucial part of high-energy physics experiments: they decide what data we record for analysis
- Continuous improvements of these triggers are key to keeping pace with energy and instantaneous luminosity increases at the LHC
- HLT jets can be used for analysis below trigger thresholds through use of a special data stream
- This comes with several challenges, but they've been overcome successfully
- Hardware and software upgrades over LS2 have the potential to lead to a much more capable trigger system, and a wider set of triggerlevel analyses, in run 3: we've got 1.5 years to make it happen :-)

Summary

- Continu with en
- HLT jets use of a
- This co succes
- Hardwa to a mu level ar

- New result submitted in January, updating photon ISR channel
- Interesting interplay between b-tagged and inclusive

Dijet + ISR

- Sensitivity ~ S/sqrt(B)
- $S_b = S_i/6$ $B_b << B_i/6$

Dijet + ISR

76

- Modified by b-tagging efficiency (reduces S_b) and light- and charm-jet mistagging rate (increases B_b)
- These are p_T dependent -> impact varies across m_{Z'}

ATLAS-CONF-2018-045

Looking for nothing - inside rather a lot

ATLAS

Inner detector

- Si pixels and strips and gas straws
- measures tracks left by charged particles
- reject pileup
- correct origin of jet

Muon system

- Various technologies
- Track charged particles escaping calorimeter
- Corrections to high-energy jets

EM calorimeter

- Liquid Ar / lead
- EM energy absorption
- Part of jet energy primarily charged hadrons

Hadronic calorimeter

- Steel / scintillator
- Hadronic energy absorption
- Part of jet energy neutrals and remaining charged

ATLAS

Inner detector

- Si pixels and strips and gas straws
- measures tracks left by charged particles
- reject pileup
- correct origin of jet

Muon system

- Various technologies
- Track charged particles escaping calorimeter
- Corrections to high-energy jets

EM calorimeter

- Liquid Ar / lead
- EM energy absorption
- Part of jet energy primarily charged hadrons

Hadronic calorimeter

- Steel / scintillator
- Hadronic energy absorption
- Part of jet energy neutrals and remaining charged

Topoclustering

Topo-cluster Formation

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Calorimeter cell signals are collected into topological clusters

Collects signals from individual or close-by particles into 3-dim *energy blobs*

Connect cell signals following spatial signal significance patterns using seed and growth control, + envelope Default 4-2-0 configuration (S = 4,

N = 2, P = 0)

 $> S \sigma_{\text{noise,cell}}^{\text{EM}}$

 $> N\sigma_{\text{noise,cell}}^{\text{EN}}$

 $> P\sigma_{\text{noise,cell}}^{\text{EM}}$

 $E_{\rm cell}^{\rm EM}$

 E^{EM}

Topoclustering

Topo-cluster Formation

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA College of Science

Calorimeter cell signals are collected into topological clusters

Collects signals from individual or close-by particles into 3-dim *energy blobs*

Connect cell signals following spatial signal significance patterns using seed and growth control, + envelope

Default 4-2-0 configuration (S = 4, N = 2, P = 0)

Applies splitting between local signal maxima

Splitting typically guided by high granularity (EM) calorimeter

- EM showers typically generate one cluster – compact shower development
- Hadronic showers can generate more than one cluster – macroscopic distances between inelastic interactions

Jet reconstruction

- Seed from cells
 with S/N > 4
- Grow with cells S/N > 2
- Split local maxima (EM calorimeter)

- Sequentially merge topoclusters
- Start from highest E_T
- Size controlled by 'radius' parameter, $\Delta R = \Delta \eta \oplus \Delta \phi = 0.4$
- End with a 2D object ~ circular in η-φ
 (except when touch)

Jet calibration

 Built from raw energy recorded by calorimeter

- sampling

calorimeters -> don't record all the energy

 Also have energy deposits from other p-p collisions in same event

Jet calibration

Origin correction

Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Jet area-based pileup correction

Applied as a function of event pile-up p⊤ density and jet area. Residual pile-up correction

Removes residual pile-up dependence, as a function of μ and N_{PV.}

 Built from raw energy recorded by calorimeter

jet

- sampling calorimeters -> don't record all the energy
- Also have energy deposits from other p-p collisions in same event

Iook at average p⊤ density of event in the calorimeter, subtract this approximated pileup contribution

Jet calibration

→ Origin correction

Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Jet area-based pileup correction

Applied as a function of event pile-up p⊤ density and jet area.

Residual pile-up correction

Removes residual pile-up dependence, as a function of μ and N_{PV.}

 Built from raw energy recorded by calorimeter

jet

sampling calorimeters ->

don't record all the energy

 Also have energy deposits from other p-p collisions in same event

Absolute MC-based calibration

Corrects jet 4-momentum to the particle-level energy scale. Both the energy and direction are calibrated.

Global sequential calibration

Reduces flavor dependence and energy leakage effects using calorimeter, track, and muon-segment variables.

at this point, have only discriminated based on event pileup and jet origin, η and p_T. We have more information than this!

Residual in situ calibration

A residual calibration is derived using in situ measurements and is applied **only to data**.

final corrections to get back to "truth" scale

8 TeV 20.3 fb⁻¹ triggers

380

37 fb⁻¹ 13 TeV 2015-6

~0.3-1.2

X / 56

1100

440

J75: exploiting the Kinematics

both use $|y^*| < 0.6$ $y^* = \frac{1}{2}(y_1 - y_2)$

Imagine a centrally produced Z': i.e. quarks back to back, $y_1 = -y_2$, $y^* = y_1$

small ⊿y, large p⊤

large Δy , small p_T

Imposing $|y^*|<0.3 =>$ higher $<p_T>$ from given Z' mass => sensitive to lower Z' mass for given p_T (**394** vs 443) (signal and background both lose a factor of ~ 2-3)