

Cryostats

Rocio Santiago Kern

On behalf of the FREIA team

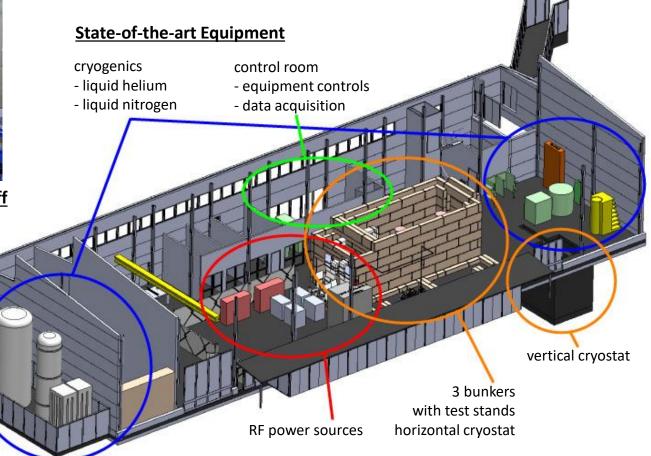
FREIA Laboratory, Uppsala University

8th of May 2019

- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

What and Whom?

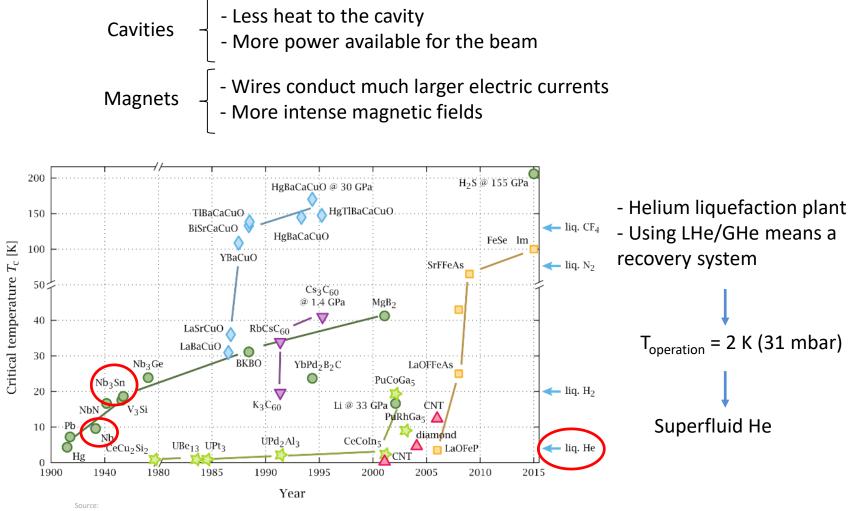


Facility for Research Instrumentation and Accelerator Development

Competent and motivated staff collaboration with physics (IFA), engineering (Teknikum), TSL and Ångström workshop

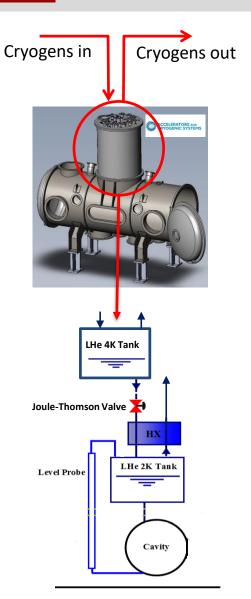
Funded by KAWS, Government, Uppsala Univ.

FREIA Collaborations


- FREIA has collaborations to test the following:
 - <u>Superconducting</u> (SC) double spoke cavity for ESS (done)
 - <u>Superconducting</u> (SC) high beta elliptical cavity for ESS (done)
 - Cryomodules housing two <u>superconducting</u> double spoke cavities for ESS (ongoing)
 - <u>Superconducting</u> dipole magnets for CERN Hi-Lumi project (to start at the end of the year)
 - <u>Superconducting</u> cold boxes for CERN (together with RFR Solutions)

Superconductivity

SC materials offer almost no electrical resistance ightarrow Lower heat disipation in the material



https://en.wikipedia.org/wiki/Superconductivity#/media/File:Timeline_of_Superconductivity_from_1900_to_2015.svg

Cryostat Fundamentals

• Main conversions

 P_{plug} = 1 kW to generate 1 W cooling power at 4.2 K

 $V_{GHe at 293 K}$ = 700 $V_{LHe at 4.2 K}$

- Minimise the amount of heat that reaches the cold parts, i.e. the device under test (DUT)
 - Convection \rightarrow vacuum
 - Radiation \rightarrow thermal shield, multilayer insulation
 - Conduction \rightarrow thermal anchors

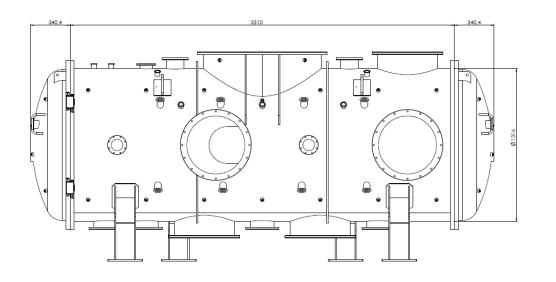
Cryostats: General Components

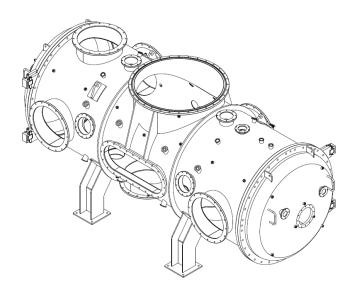
- Vacuum vessel
 - Main container, outermost component
 - Under vacuum. A high vacuum (≤10⁻⁵ mbar) already reduces the heat into the cold parts by 90%
- Thermal shield
 - Blocks the thermal radiation
 - Works as a thermal anchor or heat sink for the equipment connected to room temperature, like valves and cable instrumentation linking to equipment placed at lower temperatures
 - Usually cooled via LN₂ or GHe at a certain temperature
- Multi layer insulation (MLI)
 - Further reduces the radiation heat
 - Might help in an event of vacuum insulation loss
 - Wrapped around the thermal shield, the DUT, etc.
- Magnetic shield
 - Made of a high permeability material
 - Reduces the effect of the earth's magnetic field on the cavities
 - Can be placed at any temperature
 - Unless removable cannot be in place while testing magnets: saturation

- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

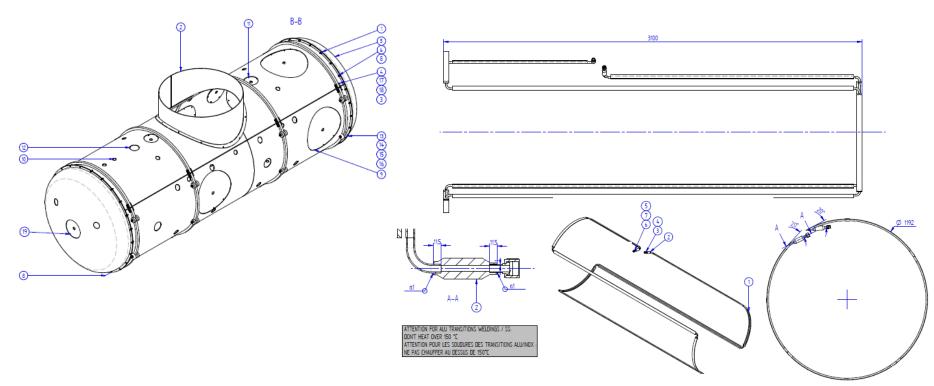
HNOSS

Total volume ca. 7 m³


- Purpose: test of superconducting cavities
- Has two parts:
 - Valvebox (VB): contains all the valves and tanks and most of the piping
 - The cryostat itself (HCS): houses the cavities and the table
- Both parts have:
 - Magnetic shield (room temperature)
 - Thermal shield (LN₂ temperature)



Vacuum Vessel


- Material: 304L
- Flange types (high vacuum): ISO F, ISO K, ISO KF
- Flange types (ultra high vacuum): ISO CF

IND.	DATE	DESSINATEUR	DESCRIPTION DES MODIFICATIONS	
MATI	ERE		TRAITEMENT	Casser les angles vifs
FINITION			TOL. GEN. ±0.2	R# 32
Sominex Diferse • Evergies • Industries • Sciences •			HCS Vacuum Vessel	⊲♦
			HCS Vacuum Vessel+Doors	ECH. 1:10
	13, Rue de la résistance 14408 Bayeux www.sorrinex.fr		1-1-1-1	A0
	PLAN INFO		1-1-1-1	FOLIO

Thermal Shield

- Material: AI (EN 573-3 AW6060T6)
- Other usual material: Cu (more expensive, more weight but better σ_{th})
- Cooling pipes: Aluminium (omega-type pipes)
- Transition between AI (thermal shield) and SS (pipes from the valvebox)
- Thermal shield not continuous

Magnetic Shield

- Made of several parts of mu-metal (high permeability material) welded together
- The material is made into shaped and placed on a furnace following a certain procedure to activate the material
- This material is very sensitive to further handling: those parts of the material exposed to work will lose the magnetic properties



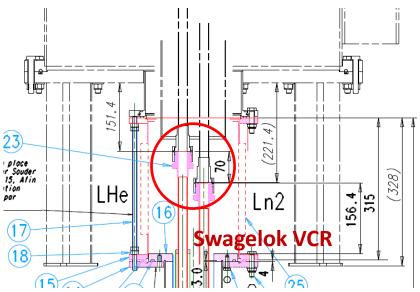
Transfer lines

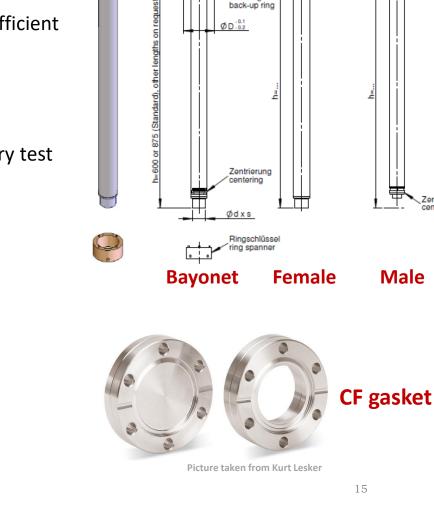
- Material: SS
- Space between the transfer line and the cooling lines
- LN2 and LHe line separated, not touching
- Insulation material: multilater insulation (MLI)
- Usually under vacuum

Transfer Lines: Couplings

Abstreife

Bundmutter


Zentrierung `centerina


Male

collar nut

stripper

- For cryogen transfer (LN2, LHe) ٠
- Swagelok VCR: •
 - **Requires less space**
- Bayonet:
 - Lower heat leak (small sizes), thus more efficient in transfer
 - Provide a vacuum insulated joint -
 - More expensive
- CF connections: ٠
 - Only to be used if need to remove for every test

⊘axs1

Abstreifer

Bundmutter

collar nut

Stützring

ØD-0.2

back-up ring

O-ring o-rina

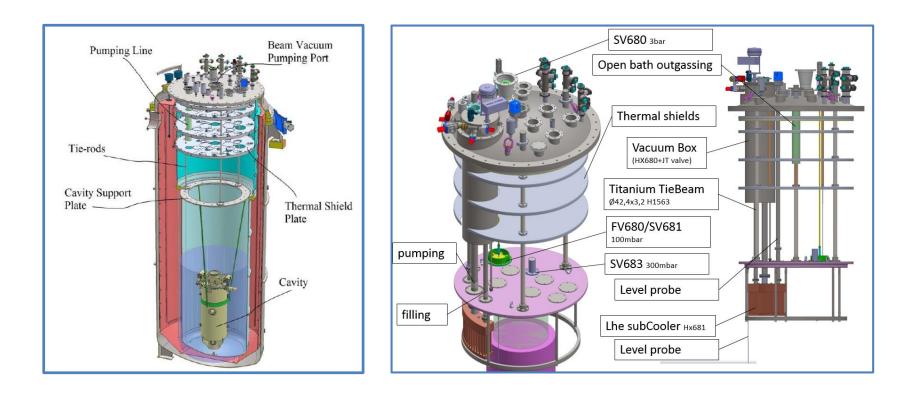
stripper

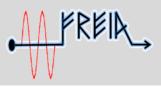
O-ring

o-ring

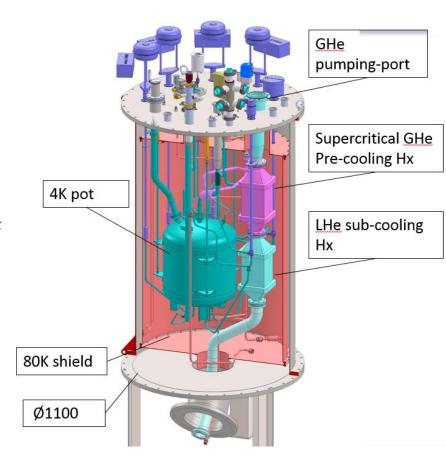
Stützrina

back-up ring


- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

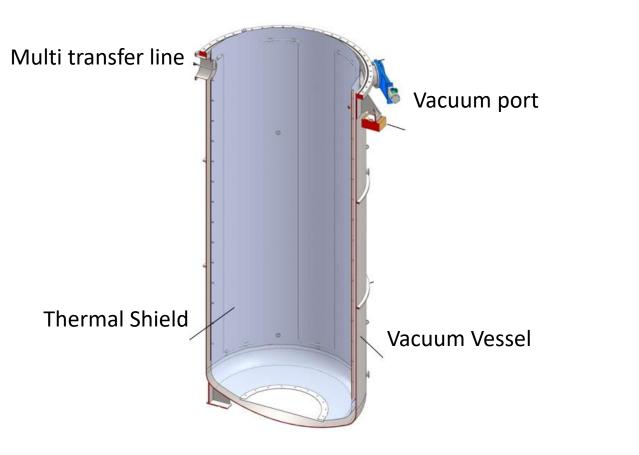


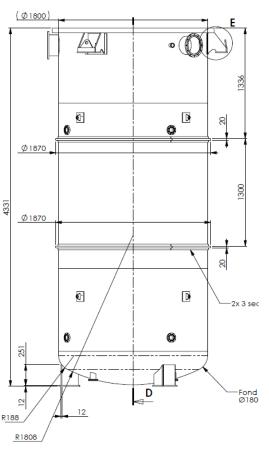
- To test superconducting magnets (max 2kA)
- To test superconducting cavities



• Used to deliver the cryogens to the cryostat

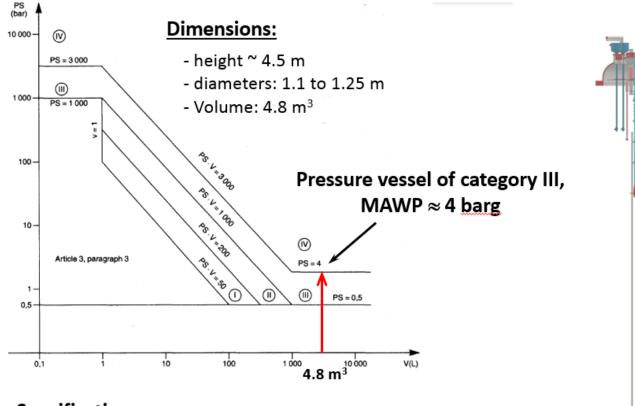
Valvebox


- Height: 2300 mm
- Vacuum Vessel Material: SS
- Thermal shield material: Cu
- Flange types (high vacuum): ISO F, ISO K, ISO KF



Vacuum Vessel and Thermal Shield

- Vacuum Vessel Material: SS
- Thermal shield material: Al
- Thermal shield not continuous
- Flange types (high vacuum): ISO F, ISO K, ISO KF



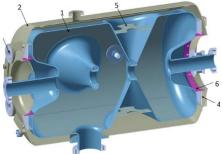
Pressure Vessel

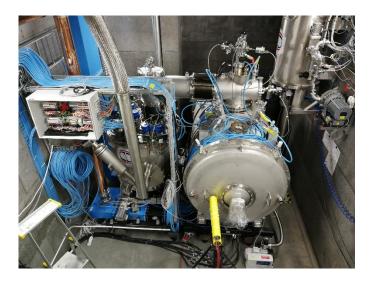
Specifications:

- Maximum allowable operating pressure: \approx 4 barg,
- Hydraulic test pressure: 7.15 bara,
- The mechanical calculations refer to EN13445 and EN13458 norms

Norms:

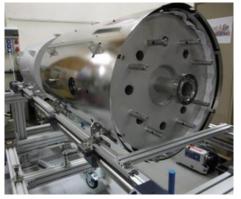
- EN13458: Cryogenic vessels
- EN13455: Unfired Pressure vessels


- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

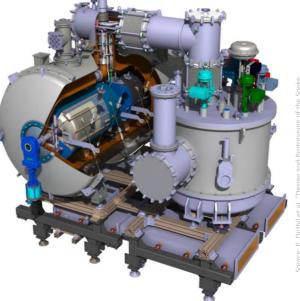


- The spoke cryomodule section at ESS will increase the protons beam energy from 90 to 216 MeV
- This section
 - Is supercoducting
 - Is 56 m long
 - Has 26 double spoke cavities
 - In 13 cryomodules

Source: P. Duchesne et al. "Design of the 352 MHz Beta 0.50 double s poke cavity for ESS", Proceedings of SRF2013, Paris, France (FRIOCO1)



Components



• It is a specialized version of HNOSS

Source: P. Duthil et al. "Design and Prototyping of the Spoke Cryomodule for ESS" Proceedings of HB2016, Malmö, Sweden, WEAM4Y01

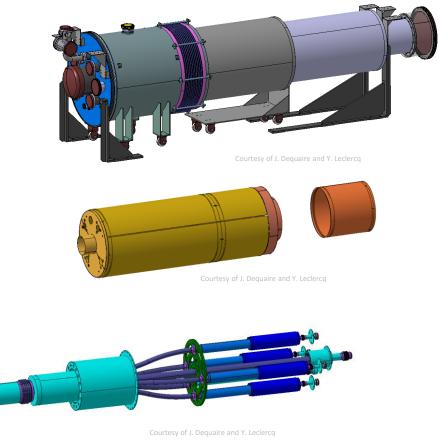
- Has two double spoke cavities inside
 - hanging from tie-rods
 - each has a magnetic shield around
- Thermal shield made of Al, cooled via LN₂
 Note: For ESS cooling is with GHe (no LN₂ available)
- The prototype has more instrumentation than the series cryomodules

Source: G. Olry et al. "Recent Progress of ESS Spoke and Elliptical Crymodules", Proceedings of SRF2015, Whistler, BC, Canada (TUAA06)


- Introduction and main concepts
- Horizontal cryostat HNOSS
- Vertical cryostat Gersemi
- Double spoke cryomodule
- Cold boxes

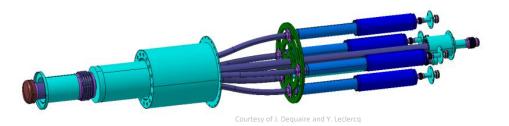
Purpose

- Interconnection (splices) and cooling of superconducting cables
- Preliminary design, in collaboration with RFR Solutions



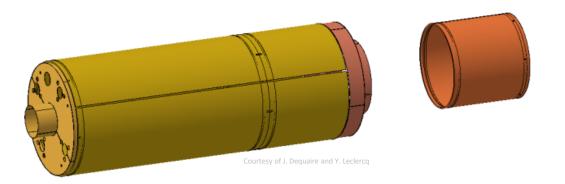
Components

- The vacuum vessel
 - Made of SS (304L or 316L)
 - Independently sliding parts to provide access to internal components
 - Flanges : ISO-K, ISO-KF, CF type
 - Tube thickness : about 6 mm
- Thermal shield
 - Made of Al alloy or Cu alloy
 - Half tube thickness : 2 mm
- The SC cable vessel
 - Made of SS 316L
 - Mass flow of helium below 17 K
 - The design pressure is 4 bar
 - Flanges : CF type
 - Tube thickness : about 3 mm


THANK YOU for your ATTENTION

Helium Vessel

- The internal envelope of the DFH cryostat contains the superconducting cables in a gaseous mass flow of helium below 17 K. The design pressure is 4 bar.
- The helium vessel is composed of a main vessel and several smaller vessels connected in between by flexible hoses. The smaller vessels are composed of double sleeves to allow access on either side.
- Formed bellows ensures the compensation of thermal contractions
- Material :
 - Helium vessel : 316L (1.4404 or 1.4435)
 - Bellows : 316L (1.4404 or 1.4435, Note: 316Ti not allowed)
 - Flexible hoses with braids : 316L (1.4404 or 1.4435)
 - Supports : Composite epoxy/glass fiber : G10
 - Conflat flanges : 316LN 3D forged (CERN procurement)
 - Fasteners : A4 degreased (silver plated for dedicated application)
 - Conflat fasteners : A4-100 degreased
- Leak tight welds :
 - Welds shall be full penetration and qualified to the PED requirements
 - TIG welds (141 or 142)
- Flanges : CF type
- Tube thickness : about 3 mm



Thermal Shield

- Composed of three independent shields made in thermal conductive material.
- Material :
 - Thermal shield : Aluminum alloy to be defined or copper alloy
 - Fasteners : A2, A4, Aluminum
- Assembly:
 - The shields must be half shelled
- Half tube thickness : 2 mm

Equipment

- Safety valves
 - possible closed volumes (betwen valves)
 - closed volumes (vacuum vessel)
- Bellows
- Cryogenic valves
 - Depending on where they sit they should be thermalized
 - For LHe used WEKA or VELAN
 - For LN2 use SELFA
- LHe level probes from American Magnetics Inc.
- Temperature sensors
 - From Troom to 30 K: normal Pt100
 - From Troom to 1.4 K: CERNOX
- Heaters for flat surfaces: thin film MINCO or OMEGA
- Heaters for gas outlets: heater cartridges from VULCANIC
- Cable connectors (Burndy, Lemo, etc.)