<u>The Top portal to discovery at the</u> <u>Large Hadron Collider</u>

Prof. Dr. Freya Blekman Interuniversity Institute for High Energies Vrije Universiteit Brussel (Belgium)

Curiosity

ΛR

BRUSSEL

<u>Curiosity</u>

src: http://www.smbc-comics.com

<u>Curiosity</u>

BRUSSEL

Curiosity

src: http://www.smbc-comics.com

<u>Curiosity</u>

src: http://www.smbc-comics.com

The building blocks of matter

Masses are in millions of Electron Volts [MeV/c²]

The Big Bang...

The Standard Model!

	$-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$
	$\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^{a} + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_{\mu}\bar{G}^aG^bg_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^$
	$ 2 M^2 W^+_{\mu} W^{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - $
	$\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} +$
	$\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^\nu -$
	$W^+_{\nu}W^{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^{\mu} - W^{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^{\mu} - W^{\mu})$
	$W_{ u}^{-}\partial_{ u}W_{\mu}^{+})] - igs_{w}[\partial_{ u}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{ u}(W_{\mu}^{+}\partial_{ u}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})]$
	$W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{-}_{$
	$\frac{1}{2}g^2W^+_{\mu}W^{\nu}W^+_{\mu}W^{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^{\nu}) + 222(A_{\mu}W^+_{\nu}W^+_{\nu}) + 222(A_{\mu}W^+_{\nu}W^+_{\nu}W^+_{\nu}) + 222(A_{\mu}W^+_{\nu}W^+_{\nu}) + 222(A_{\mu}W^+_{\mu}W^+_{\nu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}W^+_{\mu}) + 222(A_{\mu}W^+_{\mu}$
	$\frac{g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-}-A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})+g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{2}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{-}-W_{\nu}^{+}W_{\nu}^{-}]}{W^{+}W^{-}]-2M\phi^{+}\phi^{-}]$
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$aMW_{+}^{+}W_{-}^{-}H - \frac{1}{2}a\frac{M}{2}Z_{-}^{0}Z_{-}^{0}H - \frac{1}{2}ia[W_{+}^{+}(\phi^{0}\partial_{u}\phi^{-} - \phi^{-}\partial_{u}\phi^{0}) -$
	$W^{-}(\phi^{0}\partial_{}\phi^{+}-\phi^{+}\partial_{}\phi^{0})] + \frac{1}{2}a[W^{+}(H\partial_{}\phi^{-}-\phi^{-}\partial_{}H) - W^{-}(H\partial_{}\phi^{+}-\phi^{-}\partial_{}H)] + \frac{1}{2}a[W^{+}(H\partial_{}\phi^{-}-\phi^{-}\partial_{}H) - W^{-}(H\partial_{}\phi^{+}-\phi^{-}\partial_{}H)]$
	$ (\psi^{+})_{\mu} (\psi^{-})_{\mu} (\psi^$
	$ias MA (W^+\phi^ W^-\phi^+) - ia \frac{1-2c_w^2}{2} Z^0(\phi^+\partial\phi^ \phi^-\partial\phi^+) + ia \frac{1-2c_w^2}{2} Z^0(\phi^+\partial\phi^ \phi^-\partial\phi^-) + ia \frac{1-2c_w^2}{2} Z^0(\phi^+\partial\phi^ \phi^-\partial\phi^-) + ia \frac{1-2c_w^2}{2} Z^0(\phi^+\partial\phi^ \phi^-\partial\phi^-) + ia \frac{1-2c_w^2}{2} Z^0(\phi^-\partial\phi^ \phi^-) + ia \frac{1-2c_w^2}{2} Z^0(\phi^-\partial\phi^ \phi^-) + ia 1-2$
	$igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - \frac{1}{4}g^{2}W_{+}^{+}W_{-}^{-}[H^{2} + (\phi^{0})^{2} + 2\phi^{+}\phi^{-}] -$
	$\frac{1}{2}a^{2}\frac{1}{2}Z^{0}Z^{0}[H^{2} + (\phi^{0})^{2} + 2(2s^{2} - 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}a^{2}\frac{s^{2}}{2}Z^{0}\phi^{0}(W^{+}\phi^{-} +$
	$W_{\mu}\phi^{+}) = \frac{1}{2} ig \frac{1}{c_{w}} Z_{\mu}H(W_{\mu}\phi^{-} - W_{\mu}\phi^{-}) + \frac{1}{2} g \frac{1}{s_{w}} A_{\mu}\phi^{-}(W_{\mu}\phi^{-} + W_{\mu}\phi^{-}) + \frac{1}{2} ig \frac{1}{s_{w}} A_{\mu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) - g \frac{1}{2} \frac{1}{s_{w}} (2c^{2} - 1) Z^{0} A_{\mu}\phi^{+}\phi^{-} - W^{-}\phi^{-})$
	$a^{1}s^{2}_{z}A_{\mu}A_{\nu}\phi^{+}\phi^{-}\left[-\bar{e}^{\lambda}(\gamma\partial+m^{\lambda}_{\lambda})e^{\lambda}-\bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda}-\bar{u}^{\lambda}(\gamma\partial+m^{\lambda}_{\lambda})u^{\lambda}_{\lambda}-\right]$
	$ \frac{3}{d_i^{\lambda}(\gamma\partial + m_d^{\lambda})d_i^{\lambda}} + igs_w A_{\mu} [-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] + $
	$\frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)e^{$
	$1 - \gamma^{5} u_{j}^{\lambda} + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^{5}) e^{\lambda}) +$
	$(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})] + rac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{i}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+i))]$
	$\gamma^{5}(u_{i}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) \right] - \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) \right] - \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}$
	$\frac{4}{2} \frac{g m_e^{\lambda}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda})] + \frac{ig}{2\lambda \epsilon} \phi^+ [-m_d^{\kappa}(\bar{u}_i^{\lambda} C_{\lambda \kappa}(1-\gamma^5) d_i^{\kappa}) +$
	$m_{\lambda}^{2}(\bar{u}_{\lambda}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{\epsilon}^{\kappa}] + \frac{ig}{2\pi\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{\lambda}^{\lambda}C_{\lambda\mu}^{\dagger}(1+\gamma^{5})u_{\epsilon}^{\kappa}) - m_{\mu}^{\kappa}(\bar{d}_{\lambda}^{\lambda}C_{\lambda\mu}^{\dagger}(1-\gamma^{5})u_{\epsilon}^{\kappa})]$
	$\gamma^{5}_{M} u^{\kappa}_{L} = g \frac{m_{u}^{\lambda}}{2} H(\bar{u}^{\lambda} u^{\lambda}_{L}) = g \frac{m_{d}^{\lambda}}{2} H(\bar{d}^{\lambda} d^{\lambda}_{L}) + \frac{ig m_{u}^{\lambda}}{2} \phi^{0}(\bar{u}^{\lambda}_{L} \gamma^{5} u^{\lambda}_{L}) =$
	$ig {}^{\lambda}_{d} \phi^0(\bar{d}^{\lambda}_{\gamma} {}^{5}d^{\lambda}_{\lambda}) + \bar{\mathbf{Y}}^{+}(\partial^{2}_{-} - M^{2}) \mathbf{Y}^{+} + \bar{\mathbf{Y}}^{-}(\partial^{2}_{-} - M^{2}) \mathbf{Y}^{-} + \bar{\mathbf{Y}}^{0}(\partial^{2}_{-} - M^{2}) \mathbf{Y}^{0}(\partial^{2}_{-} - M^{2}) \mathbf{Y}^{-} + \bar{\mathbf{Y}}^{0}(\partial^{2}_{-} - $
	$\frac{1}{2} \frac{M^{2}}{M} (u_{j} + u_{j}) + X (0 - M) X + X + X + X (0 - M) X $
	$\frac{c_w^2}{\partial_w \bar{X}^+ Y} + i a c_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- Y - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^0 X^+) + i a s_w W^- (\partial_w \bar{X}^- X^0 - \partial_w \bar{X}^0 X^0 X^+) + i a s_w W^- (\partial_w \bar{X}^0 X^0 X^0 X^0 X^0 X^0 X^0 X^0 X^0 X^0 X$
VRIJE	$\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{\mu}_{u}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w$
	$\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$
BRUSSEL	$\frac{1-2c_w^2}{2c}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi] = Helimid \bar{X}^0\phi$
	$igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

Standard Model at the LHC: orders of magnitude

Standard Model (scarily) good at describing everything

Problems with the Standard Model

- Matter vs antimatter asymmetry
 - Standard Model cannot provide enough CP violation to explain dominance of matter
- Dark Matter
 - if it exists, it is very likely not described by the Standard Model
 - Neither is dark energy
- Standard Model neutrinos are massless
 - The 2015 Nobel Prize (Kajita and McDonald) was for neutrino oscillations, directly proving that neutrinos have mass
- Gravity is not included

Problems with the Standard Model

- Foremost: how can the mass of the Higgs boson be anything "small"?
 - It should "resist" itself (since it couples to mass, it should couple to itself as well)
 - Its mass should be almost infinite!
- Quadratic divergence in the Higgs mass

$$m^{2}(p^{2})=m_{o}^{2}+\frac{1}{p}\phi^{J=1}+\frac{J=1/2}{\phi}+\frac{J=0}{\phi}$$

$$m^{2}(p^{2}) = m^{2}(\Lambda^{2}) + Cg^{2}\int_{p^{2}}^{\Lambda^{2}} dk^{2}$$

- Why is the Higgs mass so low? What is the mechanism?
- Strong dependence of Physics(Λ_{EWK}) on Physics(Λ_{PL})
 - It's like saying that to describe the Hydrogen atom one needs to know about the quarks inside the proton (not true!)
 - Implies extreme fine-tuning (ETF) of parameters

Little Hierarchy problem, Naturalness

Little Hierarchy problem, Naturalness

Little Hierarchy problem, Naturalness

17 SM parameters do not constrain creativity

creativity is definitely subject to fashion

- SUSY in all it's variations
 - GMSB
 - MSSM, CMSSM etc
- New strong interactions?
 - Technicolor; excited quarks; compositeness; new "contact" interactions
- Exotica:
 - leptoquarks?
 - New "forces"?
 - New resonances (W-Z-like)
 - More generations?
 - Fourth generation (b'/t')
 - Gravity descending at the TeV scale?
 - New resonances; missing stuff; black holes; SUSY-like signatures [Universal Extra dimensions]
- SUSY-inspired exotica:
 - Long-lived massive (new) particles?
- Some true inspirations: "hidden valleys"?

Supersymmetry or SUSY

Top quark – special?

 Many models predict that top is special in order to explain large mass

 Or top quark has special role because of its large mass

The top quark

- First evidence 1994, CDF
- Discovery by D0 and CDF in 1995
- Heaviest known fundamental particle, m_t ≈172.5 GeV/c²
- Lifetime $\sim 5 \times 10^{-25}$ s \rightarrow no hadronization before decay

History of the top quark

The Large Hadron Collider

Overall view of the LHC experiments.

Experiments: CMS, ALICE, LHCb in France; ATLAS in Switzerland

<u>Freva Blekman, freva blekman@vub b</u>

LHC: search engine

"Physics beyond the standard model"
Google Search I'm Feeling Lucky
Advanced Search
Language Tools

Make your homepage beautiful with art by leading designers

General Purpose Detectors (GPD)

Particle flow

Particle flow in practice

- PF combines information from all subdetectors in a global event description
 - reconstruct 'particles' such as charged/neutral hadrons, photons, muons, electrons
 - These particles are used to construct composite objects such as jets, taus, missing transverse energy
 - Reject tracks from non-leading collisions before creating composite objects
 - And make assumptions for background from neutral particles

Widely used in CMS, LHCb

• CMS: big improvements in energy resolution jets, MET, tau identification,

<u>electrons</u>

VRIJE

BRUSSEL

to achieve this stability

Missing ET

- Particle flow extremely powerful approach for missing ET reconstruction
- Missing ET sensitivity to PU irreducible
 - But well reproduced in MC
 - New tricks are appearing, for example PUPPI

Reference: CMS PAS JME-19-001

Jets with b-tagging

- Long lifetime of b-hadrons in bjets
 - τ = 1.512 x 10⁻¹² s
 - cτ = 455.4 μm
- Combination of lifetime information in MVA
- Efficiency measured in top and QCD events (data) using multiple methods

arXiv:1712.07158

Top pair production at the LHC

• Pair production in 13 TeV pp collisions:

Single Top production

Top quark mass in Standard Model

Top quark and new physics

- Standard model predicts top kinematics
- Top physics = SM cross check
- Deviations are signs of new physics
- This new physics is at large mass scales, making it a good candidate to fix the holes in the SM

Top pair production rate Top mass Single top production rate $B(t \rightarrow Wb)$ $|V_{tb}|$ W helicity Top polarization Anomalous couplings Spin correlations Rare decays Top width

Why top physics is interesting?

INIVERSITEI

BRUSSFI

History: Top asymmetries: forward-backward

 New physics in production can alter angular distributions
 B = CDF Data, 9.4 fb⁻¹

$$A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

with $\Delta y = y_t - y_{\bar{t}}$

At Tevatron in 2004-2008:
2.5 S.D. deviation from SM

AFB details

A_{th} of the Top Quark

VRIJE

UNIVERSITE BRUSSEL

Freya Blekman, freya.blekman@vub.be

650

700

750

<u>A_{FB} – portal to new physics?</u>

/RI.IF

CDF and D0 measured values not consistent with Standard Model

- Depending on how you calculate it: 2.5 to 4.0 sigma from SM
- In multiple decay channels and across multiple experiments
 - Compelling to explain as new physics?
 - History lesson: No BSM, ☺ just not enough orders in SM theory prediction!

Top physics: decay channel choice

 Difficulty of isolation of top quark events inversely proportional to the complexity of the mass reconstruction

	Isolation signal	Reconstruction
Di-lepton	Relatively easy	Two neutrinos, ambiguities
Lepton+jets	Reasonable	One neutrino, use missing transverse energy
All-hadronic	Very difficult	Possibility to observe top as 'peak' in invariant mass spectrum, no energetic neutrinos

Top pair production Production cross section overview

BSM signatures in the ttbar phase space

Differential cross sections

 As top quark production is a (mostly) Quantum-Chromodynamic process, substantial additional jet multiplicity is expected

Differential cross sections

- Top quark production at high jet multiplicity is the main background for many direct searches for new physics
- Important to understand in detail _स

src: TOP-16-014 arXiv1803.03991 (JHEP)

Differential cross sections -unfolding

physics is 'smeared' by detector resolution

Knowledge of smearing used to 'unsmear'. This is called *unfolding* Unfolded picture is allows understanding of physics without (most) detector effects

src: TOP-16-014 arXiv1803.03991 (accepted JHEP)

Differential cross sections -unfolding

VRIJE

UNIVERSITEI BRUSSEL src: TOP-16-014 arXiv1803.03991 (JHEP)

Differential cross sections: event

kinematic information

- Useful for:
 - Tuning/checking QCD NNLO calculations
 - Improvement background simulation searches
 - Improvement understanding quark content proton (i.e. parton density functions)

Differential cross sections: event kinematic information

- Useful for:
 - Tuning/checking QCD NNLO calculations
 - Improvement background simulation searches
 - Improvement understanding quark content proton (i.e. parton density functions)

src: TOP-16-014 arXiv1803.03991 (JHEP)

BSM signatures in the ttbar phase space

SM top quark production: a background

Top physics: rare decays

Rare decays: Four tops

- Four-top production in SM: gluon fusion dominates
- 9.2 fb cross section @ 13 TeV

Four-top production: 'needle in a hay stack'

- Topology effectively looks like top quark production with extra jets or leptons
 - Example: 1 lepton+jets final state looks like top quark pair production with 6 (!) extra jets due to QCD radiation

Search strategy for typical 'tough' LHC search

Four-top production: 'needle in a hay stack'

PhD Lana Beck (VUB) TOP-17-009: arxiv:1710.10614 (Eur.Phys.J.C) T_P-19-017: arxiv:1906.02805 (subm. JHEP)

> BRUSSEL

src:

Production of tttt in SM: 9 fb!

Very sensitive to QCD-BSM

Results: Four tops

- Rare SM process enhanced by many BSM models such as MSSM,2HDM, ADD and some DM models
- NLO cross section 9.2 fb in SM
 - observation should be feasible in LHC Run 3 or maybe even earlier?
 - Or earlier if enhanced by BSM...
- Results from Run II dataset using BSM search strategy
 - No identification of hadronic tops
 - Same-sign dileptons + b-tagged jets, or multileptons
 - CMS SS dlieptons: **12.6**^{+5.8}_{-5.2} fb

```
(first 'observation' at 2.7\sigma!)
```

UNIVERSITEIT BRUSSEL

src:

TOP-19-017: arxiv:1906.02805 (subm. JHEP) TOP-18-003 arxiv:1908.06463 (subm. EJPC) VRIJE

Learning more from the tttt cross section?

- Many diagrams at lowest order in tttt production
- About 10-20% of the cross section comes from higgs production

src:

TOP-18-003 arxiv:1908.06463 (subm. EJPC)

- tttt is sensitive to the coupling of higgs to top quarks!
- Direct link top yukawa coupling

Learning more from the tttt cross section?

UNIVERSITEI BRUSSEL

- tttt is sensitive to the coupling of top quarks to gluons and other quarks!
- Effective field theory incl. operators not otherwise accessible

Would be even more powerful once tttt is established, incl. dedicated measurements tuned for specific couplings

Expected C_k / Λ^2 (TeV ⁻²)	Observed (TeV $^{-2}$)
[-2.0, 1.9]	[-2.2, 2.1]
[-2.0, 1.9]	[-2.2, 2.0]
[-3.4, 3.3]	[-3.7, 3.5]
[-7.4, 6.3]	[-8.0, 6.8]

CMS-PAS-FTR-18-031 (also in HL-LHC YR) Numbers for σ_{tttt} < 36 fb (2016 dataset)

Other final states

- 1 lepton final state has largest branching ratio
- Analysis on Run3 large dataset coming very soon
 - Including the oppositecharge dilepton final state and single lepton final state

Stay tuned

The future

Lessons learned?

Check if BSM signatures have similar kinematics to SM process -> <u>allows constraints, relatively easy reinterpretation even if</u> <u>complex (so sensitive) analysis</u>

- Particularly useful if no direct search
- Same approach could be followed for Run II in lieu of direct sgluon->tt searches
 - Same for:
 - Composite Higgs or non-minimal SUSY H/A to tttt
 - Vector-like quarks if only >O(6) operators
 - Even some DM scenarios predict enhancements in tttt
- Targeted searches are almost always more sensitive
 - 4-top topology wealth of physics potential

Conclusion & Outlook

- Top quark has gone from discovery to senstive probe for new physics and standard mode.
 measurements
- Side note: CMS has dedicated direct searches program in the top sector too!
 - Top-like Exotica
 - = Beyond two generations (B2G)

