Rare B decays and search for new physics

Nazila Mahmoudi

Lyon University & CERN

Based on arXiv:1702.02234, arXiv:1705.06274, arXiv1806.02791 and 1904.08399

Thanks to T. Hurth, S. Neshatpour and D. Martinez Santos

Uppsala – 29 August 2019

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
•000000	000000000	0000000	00000000	0000000	000	000

Råshult, June 2007

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Why flavour	physics?					

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP}\gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

 \rightarrow ideal probs: rare *B* decays

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Why flavour	physics?					

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

 \rightarrow ideal probs: rare *B* decays

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Why flavour	physics?					

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

```
\rightarrow ideal probs: rare B decays
```

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Why flavour	physics?					

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

 \rightarrow ideal probs: rare *B* decays

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Indirect sea	rch for new p	hysics				

 \rightarrow Interesting interplay between flavour, collider and dark matter searches Prime example: $B_s \rightarrow \mu^+ \mu^-$, $A/H \rightarrow \tau^+ \tau^-$ and direct dark matter detection (not covered in this talk)

 \rightarrow Indirect hints for new physics: Flavour "anomalies"

Deviations from the Standard Model predictions in $b \rightarrow s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!

- Model independent implications
- Model dependent implications

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000						
Outline						

Introduction

 \rightarrow Theoretical framework

Observables

- $\rightarrow {\rm Definitions}$
- \rightarrow Recent anomalies

Theoretical uncertainties

- \rightarrow Hadronic effects
- \rightarrow Statistical comparison of NP vs hadronic effects

• NP global fits

- \rightarrow Model independent implications
- Specific NP models
- Future prospects to understand the source of anomalies

Conclusions

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000						
Theoretical	framework					

Effective field theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \left(\sum_{i=1\cdots 10, S, P} \left(C_{i}(\mu) \mathcal{O}_{i}(\mu) + C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu) \right) \right)$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for $b \rightarrow s$ transitions:

+ the chirality flipped counter-parts of the above operators, \mathcal{O}'_i

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000						
Wilson coef	ficients					

The Wilson coefficients are calculated perturbatively up to NNLO

Two main steps:

• matching between the effective and full theories \rightarrow extraction of the $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$

$$C^{ ext{eff}}_i(\mu) = C^{(0) ext{eff}}_i(\mu) + rac{lpha_s(\mu)}{4\pi}C^{(1) ext{eff}}_i(\mu) + \cdots$$

• Evolving the $C_i^{\text{eff}}(\mu)$ to the scale relevant for *B* decays, $\mu \sim m_b$ using the RGE runnings.

The Wilson coefficients are process independent.

In the SM:

 $C_7 \sim -0.3$ $C_9 \sim 4$ $C_{10} \sim -4$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000						
Wilson coef	ficients					

The Wilson coefficients are calculated perturbatively up to NNLO

Two main steps:

• matching between the effective and full theories \rightarrow extraction of the $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$

$$C^{ ext{eff}}_i(\mu) = C^{(0) ext{eff}}_i(\mu) + rac{lpha_s(\mu)}{4\pi}C^{(1) ext{eff}}_i(\mu) + \cdots$$

• Evolving the $C_i^{\text{eff}}(\mu)$ to the scale relevant for *B* decays, $\mu \sim m_b$ using the RGE runnings.

The Wilson coefficients are process independent.

In the SM:

$$C_7 \sim -0.3$$
 $C_9 \sim 4$ $C_{10} \sim -4$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000						
Hadronic qu	uantities					

To compute the amplitudes:

$$\mathcal{A}(A \rightarrow B) = \langle B | \mathcal{H}_{\text{eff}} | A \rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A \rangle(\mu)$$

 $\langle B|O_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

 \rightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronising quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

Once the Wilson coefficients and hadronic quantities calculated, the physical observables (branching fractions,...) can be calculated.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion

Observables and Anomalies

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	00000000					
$b ightarrow s \ell^+ \ell^-$	transitions:	${\cal B} o {\cal K}^* \mu^+ \mu^-$				

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^- (\bar{K}^{*0} \rightarrow K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

$$\begin{split} J(q^2,\theta_\ell,\theta_{K^*},\phi) &= \sum_i J_i(q^2) \ f_i(\theta_\ell,\theta_{K^*},\phi) \\ &\searrow \ \text{angular coefficients } J_{1-9} \\ &\searrow \ \text{functions of the spin amplitudes } A_0, \ A_{\parallel}, \ A_{\perp}, \ A_t, \ \text{and } A_S \end{split}$$
 Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\begin{aligned} \mathcal{O}_9 &= \frac{e^2}{(4\pi)^2} \big(\bar{s}\gamma^{\mu} b_L \big) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} &= \frac{e^2}{(4\pi)^2} \big(\bar{s}\gamma^{\mu} b_L \big) (\bar{\ell}\gamma_{\mu}\gamma_5\ell) \\ \mathcal{O}_S &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) (\bar{\ell}\ell), \qquad \mathcal{O}_P &= \frac{e^2}{16\pi^2} \big(\bar{s}_L^{\alpha} b_R^{\alpha} \big) (\bar{\ell}\gamma_5\ell) \end{aligned}$$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	00000000					
$b ightarrow s \ell^+ \ell^-$	transitions:	${\cal B} o {\cal K}^* \mu^+ \mu^-$				

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0}\ell^+\ell^- (\bar{K}^{*0} \rightarrow K^-\pi^+)$ is completely – described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ , θ_{K^*} , ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi}=\frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

 $J(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi) = \sum_{i} J_{i}(q^{2}) f_{i}(\theta_{\ell}, \theta_{K^{*}}, \phi)$ $\stackrel{\searrow}{\longrightarrow} \text{ angular coefficients } J_{1-9}$ $\stackrel{\searrow}{\longrightarrow} \text{ functions of the spin amplitudes } A_{0}, A_{\parallel}, A_{\perp}, A_{t}, \text{ and } A_{S}$ Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$\mathcal{O}_{9} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\ell), \quad \mathcal{O}_{10} = \frac{e^{2}}{(4\pi)^{2}} (\bar{s}\gamma^{\mu} b_{L}) (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) \quad \mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\ell), \qquad \mathcal{O}_{P} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\gamma_{5}\ell) \quad \mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) \quad \mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{\alpha} b_{R}^{\alpha}) (\bar{\ell}\gamma_{5}\ell) \quad \mathcal{O}_{5} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L}^{$$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	00000000					
$B ightarrow K^* \mu^+ \mu$	ι^- observable	s				

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P_4' \rangle_{\text{bin}} = \frac{1}{N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P_5' \rangle_{\text{bin}} = \frac{1}{2N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P_6' \rangle_{\text{bin}} = \frac{-1}{2N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P_8' \rangle_{\text{bin}} = \frac{-1}{N_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + \bar{J}_{2c}]}$$

- + CP violating clean observables and other combinations
 - U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104
 - S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_i = rac{J_{i(s,c)} + ar{J}_{i(s,c)}}{rac{d\Gamma}{dq^2} + rac{dar{\Gamma}}{dq^2}} \;, \qquad P'_{4,5,8} = rac{S_{4,5,8}}{\sqrt{F_L(1-F_L)}}$$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
LHCb recen	t anomalies					

A consistent deviation pattern with the SM predictions in $b \to s$ measurements with muons in the final state:

- deviations with the SM predictions between 1 and 3.5 σ

- general trend: EXP < SM in low q^2
- but the branching ratios have very large theory uncertainties!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
LHCb recen	t anomalies					

A consistent deviation pattern with the SM predictions in $b \to s$ measurements with muons in the final state:

- deviations with the SM predictions between 1 and 3.5 σ

- general trend: EXP < SM in low q^2
- ... but the branching ratios have very large theory uncertainties!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
The LHCb	anomalies (1)					

$B ightarrow {\cal K}^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb^{-1}): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

 3.7σ deviation in the 3rd bin

$B ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P_5' (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)

Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

$B ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.4 σ combined fit (likelihood)

$B ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
The LHCb	anomalies (1)					

Current picture

LHCb, JHEP 02 (2016) 104; Belle, PRL 118 (2017); ATLAS, ATLAS-CONF-2017-023; CMS, CMS-PAS-BPH-15-008

The deviations are still there!

Difficult to think of statistical fluctuations...

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
The LHCb a	anomalies (2)					

$B_s \rightarrow \phi \mu^+ \mu^-$ branching fraction

- Same theoretical description as $B o K^* \mu^+ \mu^-$
 - Replacement of $B
 ightarrow {\cal K}^*$ form factors with the $B_s
 ightarrow \phi$ ones
 - Also consider the $B_s \bar{B}_s$ oscillations
- June 2015 (3 fb⁻¹): the differential branching fraction is found to be 3.2σ below the SM predictions in the [1-6] GeV² bin

JHEP 1509 (2015) 179

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	0000000000					
The LHCb a	anomalies (3)					

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

- Theoretical description similar to $B o K^* \mu^+ \mu^-$, but different since K is scalar
- June 2014 (3 fb⁻¹): measurement of R_K in the [1-6] GeV² bin

$$R_{\kappa} = BR(B^+ \to K^+ \mu^+ \mu^-)/BR(B^+ \to K^+ e^+ e^-)$$

 $R_{\kappa}^{SM} = 1.0006 \pm 0.0004$

2.6σ tension in [1-6] GeV² bin

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
Recent resu	ults					

$$R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$$

Run 1 (PRL 113, 151601 (2014)): $R_{\mathcal{K}}([1.1, 6.0] \, \text{GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016}$

Run 2 (arXiv:1903.09252): $R_K([1.1, 6.0] \, \text{GeV}^2) = 0.928^{+0.089+0.020}_{-0.076-0.017}$

 $R_{K}^{
m SM} = 1.0006 \pm 0.0004$

Bordone, Isidori, Pattori, Eur.Phys.J. C76 (2016) 8, 440

Combined result (arXiv:1903.09252):

$R_{\mathcal{K}}([1.1, 6.0]\,{ m GeV}^2) = 0.846^{+0.060+0.016}_{-0.054-0.014}$

Central value is now closer to the SM prediction, but the tension is still 2.5σ due to the smaller uncertainty of the new measurement.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
Recent resu	ults					

$$R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$$

Run 1 (prl 113, 151601 (2014)): $R_K([1.1, 6.0] \, \text{GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016}$

Run 2 (arXiv:1903.09252): $R_{K}([1.1, 6.0] \text{ GeV}^{2}) = 0.928^{+0.089+0.020}_{-0.076-0.017}$

 $R_{K}^{\rm SM} = 1.0006 \pm 0.0004$ Bordone, Isidori, Pattori, Eur.Phys.J. C76 (2016) 8, 440

Combined result (arXiv:1903.09252):

${ m R}_{ m K}([1.1,6.0]\,{ m GeV}^2)=0.846^{+0.060+0.016}_{-0.054-0.014}$

Central value is now closer to the SM prediction, but the tension is still 2.5σ due to the smaller uncertainty of the new measurement.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
	000000000					
Recent resu	ults					

$$R_{K} = BR(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})/BR(B^{+} \rightarrow K^{+}e^{+}e^{-})$$

Run 1 (PRL 113, 151601 (2014)): $R_{\mathcal{K}}([1.1, 6.0] \, \text{GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016}$

Run 2 (arXiv:1903.09252): $R_{\mathcal{K}}([1.1, 6.0] \, \text{GeV}^2) = 0.928^{+0.089+0.020}_{-0.076-0.017}$

 $R_{K}^{
m SM} = 1.0006 \pm 0.0004$ Bordone, Isidori, Pattori, Eur.Phys.J. C76 (2016) 8, 440

Combined result (arXiv:1903.09252):

$${\sf R}_{{\cal K}}([1.1,6.0]\,{
m GeV}^2)=0.846^{+0.060+0.016}_{-0.054-0.014}$$

Central value is now closer to the SM prediction, but the tension is still 2.5 σ due to the smaller uncertainty of the new measurement.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000	000000000	0000000	00000000	0000000	000	000
The LHCb	anomalies (4)	1				

Lepton flavour universality in $B \to K^* \ell^+ \ell^-$

• LHCb measurement (April 2017):

$$R_{K^*} = BR(B^0 \to K^{*0} \mu^+ \mu^-) / BR(B^0 \to K^{*0} e^+ e^-)$$

• Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

2.2-2.5 σ tension with the SM predictions in each bin

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		•000000				
Transversity	amplitudes					

$$\mathcal{H}_{ ext{eff}} = \mathcal{H}_{ ext{eff}}^{ ext{had}} + \mathcal{H}_{ ext{eff}}^{ ext{sl}}$$

$$\mathcal{H}_{ ext{eff}}^{ ext{sl}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V_{ts}^*\Big[\sum_{i=7,9,10}\,C_i^{(\prime)}\,O_i^{(\prime)}\Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} | \bar{B}
angle$: $B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$

Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ &\qquad \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Transversity	amplitudes					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V_{ts}^*\left[\sum_{i=1...6}\,C_i\,O_i + \,C_8\,O_8
ight]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$

$$\times \int d^{4}y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$

$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\left[\underbrace{\mathrm{LO \ in}\ \mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact.,\ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power\ corrections}}\right]$$

Beneke et al.: 106067; 0412400

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Transversity	amplitudes					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}^{\mathrm{had}}_{\mathrm{eff}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V^*_{ts}\left[\sum_{i=1...6}\,C_i\,O_i + C_8\,O_8
ight]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle \\ \times \int d^{4}y \ e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle \\ \equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}\mathcal{L}_{V}^{\mu}\left[\underbrace{\mathrm{LO\ in\ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact.,\ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power\ corrections}}\right]_{\substack{\text{power\ corrections}\\ \text{-}\ unknown\\ \mathrm{partial\ calculation:\ Khodjamirian\ et\ al.,\ ...}}}$$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Transversity	amplitudes					

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\mathcal{H}^{ ext{had}}_{ ext{eff}} = -rac{4\,G_F}{\sqrt{2}}\,V_{tb}\,V^*_{ts}\left[\sum_{i=1...6}\,C_i\,O_i + C_8\,O_8
ight]$$

$$\begin{aligned} \mathcal{A}_{\lambda}^{(\mathrm{had})} &= -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}| j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle \\ &\times \int d^{4}y \ e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}| T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle \\ &\equiv \frac{e^{2}}{q^{2}} \epsilon_{\mu} \mathcal{L}_{V}^{\mu} \Big[\underbrace{\mathrm{LO \ in \ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact., \ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power \ corrections}} \Big] \\ &\xrightarrow{\mathrm{bencke \ et \ al.:}}_{\mathrm{1006.4945}} \underbrace{\mathrm{bencke \ et \ al.:}}_{\mathrm{1006.4945}} \underbrace{\mathrm{bencke \ et \ al.:}}_{\mathrm{1006.4945}} \underbrace{\mathrm{bencke \ et \ al.:}}_{\mathrm{power \ corrections}} \Big] \end{aligned}$$

The significance of the anomalies depends on the assumptions made for the unknown power corrections!

This does not affect R_K and R_{K^*}

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic e	ffects					

Description also possible in terms of helicity amplitudes:

$$\begin{aligned} H_{V}(\lambda) &= -i \, N' \left\{ C_{9} \, \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \, \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7} \, \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \, \tilde{T}_{R\lambda}(q^{2})) - 16 \pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\} \\ H_{A}(\lambda) &= -i \, N' (C_{10} \, \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \, \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda} \\ H_{5} &= i \, N' \, \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \qquad \left(N' = -\frac{4 \, G_{F} \, m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} \, V_{tb} V_{ts}^{*} \right) \end{aligned}$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_\lambda(q^2) = h_\lambda^{(0)} + rac{q^2}{1 {
m GeV}^2} h_\lambda^{(1)} + rac{q^4}{1 {
m GeV}^4} h_\lambda^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028

M. Ciuchini et al., JHEP 1606 (2016) 116

lt seems

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \quad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic e	ffects					

Description also possible in terms of helicity amplitudes:

$$H_{V}(\lambda) = -i N' \left\{ C_{9} \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \hat{m}_{b}}{m_{B}} (C_{7} \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \tilde{T}_{R\lambda}(q^{2})) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\}$$

$$H_{A}(\lambda) = -i N' (C_{10} \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \tilde{V}_{R\lambda}(q^{2})), \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda}$$

$$H_{5} = i N' \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \left(N' = -\frac{4G_{F}m_{B}}{\sqrt{2}} \frac{e^{2}}{16\pi^{2}} V_{tb} V_{ts}^{*} \right)$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \quad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic e	ffects					

Description also possible in terms of helicity amplitudes:

$$H_{V}(\lambda) = -i N' \left\{ C_{9} \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \hat{m}_{b}}{m_{B}} (C_{7} \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \tilde{T}_{R\lambda}(q^{2})) - 16\pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\}$$

$$H_{A}(\lambda) = -i N' (C_{10} \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda}$$

$$H_{5} = i N' \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \qquad \qquad \left(N' = -\frac{4G_{F}m_{B}}{\sqrt{2}} \frac{e^{2}}{16\pi^{2}} V_{tb} V_{ts}^{*} \right)$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_\lambda(q^2)=h_\lambda^{(0)}+rac{q^2}{1{
m GeV}^2}h_\lambda^{(1)}+rac{q^4}{1{
m GeV}^4}h_\lambda^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \quad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!
Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
Hadronic ef	fects					

 $\implies q^4$ terms can rise due to terms which multiply Wilson coefficients $\implies C_7^{\rm NP}$ and $C_9^{\rm NP}$ can each cause effects similar to $h_{\lambda}^{(0,1,2)}$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		0000000				
Hadronic ef	fects					

Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_V^{C_9^{\rm NP}}(\lambda) = -iN'\tilde{V}_L(q^2)C_9^{\rm NP} = iN'm_B^2\frac{16\pi^2}{q^2}\left(a_\lambda C_9^{\rm NP} + q^2b_\lambda C_9^{\rm NP} + q^4c_\lambda C_9^{\rm NP}\right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_i^{NP}(2 \text{ or } 4 \text{ parameters})$

Due to this embedding the two fits can be compared with the Wilk's test

Introduction 0000000	Anomalies 000000000	Theory uncertainties 0000●00	Global fits 00000000	NP scenarios	Prospects	Conclusion
Hadronic ef	fects					

Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_{V}^{C_{9}^{\mathrm{NP}}}(\lambda) = -i\mathcal{N}'\tilde{V}_{L}(q^{2})C_{9}^{\mathrm{NP}} = i\mathcal{N}'m_{B}^{2}\frac{16\pi^{2}}{q^{2}}\left(a_{\lambda}C_{9}^{\mathrm{NP}} + q^{2}b_{\lambda}C_{9}^{\mathrm{NP}} + q^{4}c_{\lambda}C_{9}^{\mathrm{NP}}\right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_i^{NP}(2 \text{ or 4 parameters})$

Due to this embedding the two fits can be compared with the Wilk's test

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		0000000				
Wilk's test						

SM vs 2 parameters and 4 parameters p-values were independently computed through 2D profile likelihood integration, and they give similar results

For low q^2 (up to 8 GeV²):

	2 (δC_9)	$4 (\delta C_7, \delta C_9)$	$18~(h^{(0,1,2)}_{+,-,0})$
0	$3.7 imes10^{-5}$ (4.1 σ)	$6.3 imes10^{-5}$ (4.0 σ)	$6.1 imes 10^{-3}$ (2.7 σ)
2	-	$0.13 (1.5\sigma)$	0.45 <mark>(0.76</mark> σ)
4	-	_	$0.61 (0.52\sigma)$

 \rightarrow Adding $\delta \textit{C}_{\rm 9}$ improves over the SM hypothesis by 4.1 σ

 \rightarrow Including in addition δC_7 or hadronic parameters improves the situation only mildly

 \rightarrow One cannot rule out the hadronic option

Adding 16 more parameters does not really improve the fits

The situation is still inconclusive

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
· .						

Estimates of hadronic effects

Various methods for hadronic effects

$$\frac{e^2}{q^2}\epsilon_{\mu}L_V^{\mu}\Big[Y(q^2)\tilde{V_{\lambda}} + \text{LO in }\mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_{\lambda}(q^2)\Big]$$

	factorisable	non- factorisable	power corrections (soft gluon)	region of calculation	physical region of interest
Standard	1	1	×	$q^2 \lesssim 7~{ m GeV^2}$	directly
Khodjamirian et al. [1006.4945]	1	x	1	$q^2 < 1 { m GeV}^2$	extrapolation by dispersion relation
Bobeth et al. [1707.07305]	1	1	1	$q^2 < 0 { m GeV^2}$	extrapolation by analyticity

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
		000000				
· .						

Estimates of hadronic effects

Various methods for hadronic effects

$$\frac{e^2}{q^2}\epsilon_{\mu}L_V^{\mu}\Big[Y(q^2)\tilde{V_{\lambda}} + \text{LO in }\mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_{\lambda}(q^2)\Big]$$

	factorisable	non- factorisable	power corrections (soft gluon)	region of calculation	physical region of interest
Standard	1	1	×	$q^2 \lesssim 7~{ m GeV^2}$	directly
Khodjamirian et al. [1006.4945]	1	x	1	$q^2 < 1 { m GeV}^2$	extrapolation by dispersion relation
Bobeth et al. [1707.07305]	1	1	1	$q^2 < 0 { m GeV^2}$	extrapolation by analyticity

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000	00000000	000000	0000000	000000	000	000

Global fits

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			0000000			
New Physic	s interpretati	on?				

Many observables \rightarrow Global fits of the latest LHCb data

Relevant Operators:

$$\mathcal{O}_7$$
, \mathcal{O}_8 , $\mathcal{O}_{9\mu,e}^{(')}$, $\mathcal{O}_{10\mu,e}^{(')}$ and $\mathcal{O}_{S-P}\propto (ar{s}P_Rb)(ar{\mu}P_L\mu)\equiv \mathcal{O}_0'$

NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 0●000000	NP scenarios	Prospects	Conclusion
Global fits						

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- Parameterisation of uncertainties from power corrections:

$$A_k
ightarrow A_k \left(1 + a_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			0000000			
Global fits						

Global fits of the observables obtained by minimisation of

$$\chi^2 = \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right) \cdot (\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}})^{-1} \cdot \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- $BR(B \rightarrow X_s \gamma)$
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{s} \mu^{+} \mu^{-})$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B
 ightarrow K^{*+} \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- *R*_K
- $B \to K^{*0}\mu^+\mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			00000000			
Single opera	tor fits					

Comparison of one-operator NP fits:

(under the assumption of 10% non-factorisable power corrections)

	All observables except R_{K}, R_{K^*}			Only R_K, R_{K^*}			
	$(\chi^2_{ m SM} = 100.2)$				$(\chi^2_{\rm SM} = 10)$	5.9)	
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$		b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_{\mathrm{SM}}$
δC9	-1.00 ± 0.20	82.5	4.2σ	δC9	-2.04 ± 5.93	16.8	0.3 σ
δC_9^{μ}	-1.03 ± 0.20	80.3	4.5σ	δC_9^{μ}	-0.74 ± 0.28	8.4	2.9σ
δC_9^e	0.72 ± 0.58	98.9	1.1σ	δC_9^e	$\textbf{0.79} \pm \textbf{0.29}$	7.7	3.0σ
δC_{10}	0.25 ± 0.23	98.9	1.1σ	δC_{10}	$\textbf{4.10} \pm \textbf{11.87}$	16.7	0.5σ
δC^{μ}_{10}	0.32 ± 0.22	98.0	1.5σ	δC^{μ}_{10}	0.77 ± 0.26	6.1	3.3σ
δC_{10}^e	-0.56 ± 0.50	99.1	1.0σ	δC_{10}^e	-0.78 ± 0.27	6.0	3.3σ
$\delta C^{\mu}_{\rm LL}$	-0.48 ± 0.15	89.1	3.3σ	$\delta C^{\mu}_{ m LL}$	-0.37 ± 0.12	7.0	3.1σ
$\delta C_{\rm LL}^e$	0.33 ± 0.29	99.0	1.1σ	$\delta C^e_{ m LL}$	0.41 ± 0.15	6.8	3.2σ

 $\delta C_{\rm LL}^\ell$ basis corresponds to $\delta C_9^\ell = -\delta C_{10}^\ell.$

 $\rightarrow C_9$ and C_9^{μ} solutions are favoured with SM pulls of 4.2 and 4.5 σ \rightarrow Good fits possible for $R_{\kappa^{(*)}}$ ratios with NP in $C_9^{e/\mu}$, $C_{10}^{e/\mu}$ or $C_{LL}^{e/\mu}$

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000	000000000	0000000	00000000	0000000	000	000
Two operate	or fits					

all observables except R_K and R_{K^*} (with the assumption of 10% power corrections) 0.6 68% CL 95% CL -- 68% excl. B₃→µµ 68% CL 95% CL -- 68% excl. B_g→μμ 68% CL 95% CL -- 68% excl. B_g→μμ -- 96% excl. B_g→μμ 0.40.4 0.4 — 95% excl. B₅→µµ — 95% excl. B_q→µµ 0.2 0.2 $\delta C_{10\,\mu}/C_{10}^{\rm SM}$ $\delta C_{10~e}/C_{10}^{\rm SM}$ 0.2 $\delta C_{9\,e}/C_{9}^{SM}$ 0.0 0.0 0.0 -0.2-0.2-0.2 -0.4-0.4-0.4-0.6-0.4-0.2 0.0 0.2 0.4 -0.4-0.20.0 0.2 0.4 -0.4-0.20.0 0.2 0.4 $\delta C_{9\,\mu}/C_{9}^{SM}$ $\delta C_{9\,\mu}/C_{9}^{\rm SM}$ $\delta C_{10 \, \mu} / C_{10}^{\rm SM}$

 4.1σ

Pull:

 4.1σ

 1.1σ

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000	000000000	0000000	00000000	0000000	000	000
Two operate	or fits					

all observables except R_K and R_{K^*} (with the assumption of 10% power corrections)

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			00000000			
Updated fit	s - single ope	rators				

Using <u>all</u> the relevant data on $b \rightarrow s$ transitions:

assuming 10% error for the power corrections

All observables ($\chi^2_{ m SM}=$ 117.03)						
	b.f. value χ^2_{\min} Pull _{SI}					
δC_9	-1.01 ± 0.20	99.2	4.2σ			
δC_9^{μ}	-0.93 ± 0.17	89.4	5.3σ			
δC_9^e	$\textbf{0.78} \pm \textbf{0.26}$	106.6	3.2σ			
δC_{10}	0.25 ± 0.23	115.7	1.1σ			
δC^{μ}_{10}	$\textbf{0.53} \pm \textbf{0.17}$	105.8	3.3σ			
δC^e_{10}	-0.73 ± 0.23	105.2	3.4σ			
$\delta C^{\mu}_{\rm LL}$	-0.41 ± 0.10	96.6	4.5σ			
$\delta C_{\rm LL}^e$	$\textbf{0.40} \pm \textbf{0.13}$	105.8	3.3σ			

The NP significance is reduced by at least 0.5σ compared to before.

In cases of flavour-symmetric C_9 and C_{10} , which are independent from the changes in the ratios, one finds the same NP significance as expected.

Introduction 0000000	Anomalies 000000000	Theory uncertainties 0000000	Global fits 000000●0	NP scenarios	Prospects	Conclusion 000
More compl	ete analyses					

In a New Physics model:

- new vector bosons: C7, C9, C10
- new fermions: *C*₇, *C*₈, *C*₉, *C*₁₀
- extended Higgs sector/new scalars: C_S, C_P

e.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_5, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

complex C_7 , C_8 , C_9^{ℓ} , C_{10}^{ℓ} , C_S^{ℓ} , C_P^{ℓ} + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
More comp	lete analyses					000

In a New Physics model:

- new vector bosons: C7, C9, C10
- new fermions: *C*₇, *C*₈, *C*₉, *C*₁₀
- extended Higgs sector/new scalars: C_S, C_P

e.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_5, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

complex $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 000000●0	NP scenarios	Prospects 000	Conclusion
More compl	ete analyses					

In a New Physics model:

- new vector bosons: C7, C9, C10
- new fermions: *C*₇, *C*₈, *C*₉, *C*₁₀
- extended Higgs sector/new scalars: C_S, C_P

e.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_5, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

complex $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

```
real C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell} + primed coefficients
```

corresponding to 20 degrees of freedom.

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
			0000000			
Full fit - res	ults					

Set: real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_5^{\ell}, C_P^{\ell}$ + primed coefficients (20 (16) degrees of freedom)

All observables with $\chi^2_{ m SM}=117.03$					
(λ	$\chi^2_{\rm min} = 71.96; {\rm Pu}$	$\rm Ill_{SM} = 3.3$ (3.8)	σ)		
δ	C ₇	δ	C ₈		
-0.01	± 0.04	0.82 =	± 0.72		
δ	C ₇	δ	C ₈ '		
0.01 =	± 0.03	-1.65	± 0.47		
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC_{10}^e		
-1.37 ± 0.25	-6.55 ± 2.37	-0.11 ± 0.27	2.34 ± 3.11		
$\delta C_{9}^{\prime \mu}$	$\delta C_9^{\prime e}$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$		
0.23 ± 0.62	$\textbf{0.75} \pm \textbf{2.82}$	-0.16 ± 0.36	1.67 ± 3.05		
$C^{\mu}_{Q_1}$	$C^{e}_{Q_{1}}$	$C^{\mu}_{Q_2}$	$C^{e}_{Q_2}$		
-0.01 ± 0.09	undetermined	-0.05 ± 0.19	undetermined		
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime \mu} = C_{Q_1}^{\prime e} = C_{Q_2}^{\prime \mu} = C_{Q_2}^{\prime e}$				
0.13 ± 0.09	undetermined	-0.18 ± 0.20	undetermined		

Wilks' test:

- No real improvement in the fits when going beyond the C_9^{μ} case
- Pull with the SM decreases when all WC are varied
- Many parameters are very weakly constrained

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000	00000000	000000	0000000	000000	000	000

NP scenarios

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
0000000	000000000	0000000	00000000	000000	000	000
New physics	scenarios					

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect other Wilson coefficients in a lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

Very difficult in the MSSM!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM						

Fit results in the pMSSM

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
				000000		
MSSM and	<i>C</i> ₉					

Contributions to C_9 and C'_9 can come from Z and photon penguins, and box diagrams

- Z-penguins suppressed by small vector coupling
- $\bullet\,$ charged Higgs contributions proportional to $1/\tan^2\beta$
- other penguin diagrams suppressed by the LHC squark and gluino mass limits
- in any case, only box diagrams can lead to lepton flavour non-universality...
- $\bullet \ \ldots \ {\rm but \ box} \ {\rm diagrams} \ {\rm suppressed} \ {\rm by \ the \ LEP} \ {\rm slepton} \ {\rm and} \ {\rm chargino} \ {\rm mass} \ {\rm bounds}$

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios 000●000	Prospects 000	Conclusion
New physics	scenarios					

Global fits: New physics is likely to appear in C_9 :

$$O_9=rac{e^2}{(4\pi)^2}(ar{s}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$$

It can also affect other Wilson coefficients in a lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

 \rightarrow Need for tree level diagrams...

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models

 b_L Z' μ^+

Z' obvious candidate to generate the O_9 operator

Needs:

- Flavour-changing couplings to left-handed quarks
- Vector-like couplings to leptons
- Flavour violation or non-universality in the lepton sector

Strong constraints from $B_s - \bar{B}_s$ mixing and LEP contact interactions.

Anomalies consistent with a Z' of 1 to 10 TeV

Can appear in many models, like 331 models, gauge $L_{\mu}-L_{ au}$ models, ...

See e.g. Altmannshofer et al. 1308.1501, Gauld et al. 1308.1959, Buras et al. 1309.2466, Gauld et al. 1310.1082, Buras et al. 1311.6729, Altmannshofer et al. 1403.1269, Buras et al. 1409.4557, Glashow et al. 1411.0565, Crivellin et al. 1501.00993, Altmannshofer et al. 1411.3161, Crivellin et al. 1503.03477, Niehoff et al. 1503.03865, Crivellin et al. 1505.02026, Celis et al. 1505.03079, ...

Nazila Mahmoudi

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios 00000●0	Prospects	Conclusion 000
Leptoquark	s					

- t-channel diagrams
- Different possible representations, can be scalar (spin 0) or vector (spin 1)
- \bullet Cannot alter only C_9, but both C_9 and C_{10} (= -C_9)
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Model can be tested with $R_{\kappa^{(*)}}$ measurements and searches for $b o s\mu^{\pm}e^{\mp}$ and $\mu o e\gamma$

Possible scenario: two leptoquarks coupling to one lepton type only.

See e.g. Hiller et al. 1408.1627, Biswas et al. 1409.0882, Buras et al. 1409.4557, Sahoo et al. 1501.05193, Hiller et al. 1411.4773, Becirevic et al. 1503.09024, Alonso et al. 1505.05164, ...

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios 000000●	Prospects	Conclusion
Composite r	nodels					

- Neutral resonance ho_μ coupling to the muons via composite elementary mixing
- requires some compositeness for the muons
- can allow for lepton flavour violating couplings
- constrained by the LEP Z-width measurements and $B_s \bar{B}_s$ mixing

Nonperturbative physics, making predictions more difficult...

See e.g. Gripaios et al. 1412.1791, Niehoff, et al. 1503.03865, Niehoff et al. 1508.00569, Carmona et al. 1510.07658, ...

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
000000	000000000	000000	00000000	0000000	000	000

Future prospects

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios	Prospects ●○○	Conclusion
How to reso	ve the issue?)				

1) Improving the precision of the theoretical calculations

- still some QCD ingrediants unknown, or only partially known
 - \rightarrow New methods and alternative approaches are required
 - \rightarrow Several attempts already in the literature
- 2) Cross-check with other $R_{\mu/e}$ ratios
 - R_K and R_{K*} ratios are theoretically very clean
 - The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios	Prospects ●○○	Conclusion			
How to resolve the issue?									

1) Improving the precision of the theoretical calculations

- still some QCD ingrediants unknown, or only partially known
 - \rightarrow New methods and alternative approaches are required
 - \rightarrow Several attempts already in the literature

2) Cross-check with other $R_{\mu/e}$ ratios

- R_K and R_{K^*} ratios are theoretically very clean
- The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

	Predictions assuming 12 fb ⁻¹ luminosity							
Obs.	C_9^{μ}	C ₉ ^e	C_{10}^{μ}	C ₁₀				
$R_{F_l}^{[1.1,6.0]}$	[0.785, 0.913]	[0.909, 0.933]	[1.005, 1.042]	[1.001, 1.018]				
$R_{S_{\rm B}}^{[\bar{1}.1,6.0]}$	[-0.787, 0.394]	[0.603, 0.697]	[0.881, 1.002]	[1.053, 1.146]				
$R_{K^*}^{[15,19]}$	[0.621, 0.803]	[0.577, 0.771]	[0.589, 0.778]	[0.586, 0.770]				
$R_{K}^{[15,19]}$	[0.597, 0.802]	[0.590, 0.778]	[0.659, 0.818]	[0.632, 0.805]				
$R_{\phi}^{[1.1,6.0]}$	[0.748, 0.852]	[0.620, 0.805]	[0.578, 0.770]	[0.578, 0.764]				

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
					000	
How to reso	lve the issue	?				

3) Future LHCb prospects

Global fits using the angular observables only (NO theoretically clean R ratios) Considering several luminosities, assuming the current central values

LHCb will be able to establish new physics within the angular observables even in the pessimistic case that there will be no theoretical improvements!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
					000	
How to reso	lve the issue	?				

4) Cross-check with inclusive modes

Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)

At Belle-II, for inclusive $b \rightarrow s\ell\ell$:

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

 \rightarrow Belle-II will check the NP interpretation with theoretically clean modes

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Cooking sce	narios					

Cooking a New Physics scenario

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Cooking sce	narios					

Cooking a New Physics scenario

Model-independent approach

\downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Cooking sce	narios					

Cooking a New Physics scenario

Model-independent approach

\downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Simplified models

\downarrow

Z', Lepto quarks, ...
Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Cooking sce	enarios					

Cooking a New Physics scenario

Model-independent approach

 \downarrow

gives us the ingredients C_9 , a bit of C_{10} ,...

Simplified models

 \downarrow

Z', Lepto quarks, ...

UV-complete theory

The real model

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	٢S					

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction 0000000	Anomalies 000000000	Theory uncertainties	Global fits 00000000	NP scenarios	Prospects	Conclusion ○●○
Final remark	s					

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	ĸs					

- Statistical fluctuations alone? XNO!
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	ĸs					

- Statistical fluctuations alone? XNO!
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	ĸs					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	ĸs					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \times NO!
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \times NO!
 - Combination of above?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \times NO!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \ge NO!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \ge NO!
 - Combination of above? POSSIBLE

• New Physics option? $\sqrt{\text{POSSIBLE}}$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \ge NO!
 - Combination of above? POSSIBLE

Is Nature teasing us?

• New Physics option? $\sqrt{\mathsf{POSSIBLE}}$

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \ge NO!

Is Nature teasing us?

• New Physics option? $\sqrt{\text{POSSIBLE}}$

Or teaching us?

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Final remark	s					

- Statistical fluctuations alone? XNO!
- Experimental issues alone? XNO!
- Underestimated theoretical uncertainties alone? XNO!
- Unknown pieces in the theoretical calculations alone? \ge NO!

Is Nature teasing us?

• New Physics option? $\sqrt{\text{POSSIBLE}}$

Or teaching us?

The next round of LHCb results will give us the verdict!

Introduction	Anomalies	Theory uncertainties	Global fits	NP scenarios	Prospects	Conclusion
						000
Path to Nev	v Physics					

We may be in such a situation:

Columbus had Toscanelli's map. It was terribly wrong, but served the purpose!

Backup

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- 2 \times form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

Imposing $BR(B_s \rightarrow \mu^+ \mu^-)$, if C_s and C_P independent, there exists a degeneracy between C_{10} and C_P so that large values for C_P are possible

Imposing $BR(B_s \rightarrow \mu^+ \mu^-)$, if C_s and C_P independent, there exists a degeneracy between C_{10} and C_P so that large values for C_P are possible

Even if $C_S = -C_P$, allowing for small variations of $C_{S,P}$ alleviates the constraints from $B_s \to \mu^+\mu^-$ on C_{10}

complex $\mathit{C_7}, \mathit{C_8}, \mathit{C_9^\ell}, \mathit{C_{10}^\ell}, \mathit{C_5^\ell}, \mathit{C_P^\ell}$ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2 , acting as *spurious* degrees of freedom.

$$|\chi^2(\delta C_i=1)-\chi^2(\delta C_i=0)|<1$$

complex C_7 , C_8 , C_9^{ℓ} , C_{10}^{ℓ} , C_5^{ℓ} , C_P^{ℓ} + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2 , acting as *spurious* degrees of freedom.

$$|\chi^2(\delta C_i=1)-\chi^2(\delta C_i=0)|<1$$

complex C_7 , C_8 , C_9^{ℓ} , C_{10}^{ℓ} , C_5^{ℓ} , C_P^{ℓ} + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2 , acting as *spurious* degrees of freedom.

$$|\chi^2(\delta C_i=1)-\chi^2(\delta C_i=0)|<1$$

complex $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_5^{\ell}, C_P^{\ell}$ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2 , acting as *spurious* degrees of freedom.

$$|\chi^2(\delta C_i=1)-\chi^2(\delta C_i=0)|<1$$