

Exploring selections across channels in Dark Matter searches with top quarks at the ATLAS experiment of the LHC

Olga Sunneborn Gudnadottir Master thesis presentation Supervisor: Rebeca Gonzalez Suarez Uppsala University

Introduction

- Dark Matter makes up 26% of the energy-matter budget of the universe
- If made up of a new particle species could be found at the Large Hadron Collider
- Searches within ATLAS target various final states of Dark Matter production
- Two such final states are tW+DM, tt+DM
 - Similar final states
 - Interference at NLO
 - Is there overlap between the analyses?

Outline

- Background
 - Dark Matter
 - Large Hadron Collider and ATLAS detector
 - Dark Matter as beyond Standard Model physics
- Objective
 - tW+DM, tt+DM
- Overlap analysis
 - Event generation
 - Signal region definition
- Conclusion

UPPSALA

Dark Matter

- Astronomers noticed more mass in the universe than could be explained by observable stars: Missing mass problem
- Studied: planets, non-luminous stars, primordial black holes, MONDs...
- Today: Dark Matter used to refer to an unknown substance/particle
 - Interacts through gravity
 - Interacts not at all or very weakly through other forces

Dark Matter as beyond SM physics

Standard Model of Elementary Particles

- The Standard model covers our current understanding of particle physics
 - Cannot explain Dark Matter
- Many theories beyond the Standard Model (BSM) try to explain Dark Matter
- Experimental approaches:
 - Direct detection
 - Indirect detection
 - Collider experiments

The ATLAS detector at the LHC

- The LHC is a proton-proton collider between France and Switzerland
 - 27 km in circumference
 - Center of mass energy 13 TeV
- ATLAS is a general-purpose detector at the LHC
 - Study the widest possible range of physics phenomena
 - In particular BSM searches

Dark Matter Searches with ATLAS

- Dark Matter is invisible to the detector
- Common feature: high missing transverse energy (MET)
- Use models to focus the searches:
 - EFTs
 - Valid at energies at which the mediator is not resolved
 - Simplified models
 - Represent several different theories
 - Small number of parameters
 - Restricted phenomenology
 - Full theories
 - Complete
 - Not as general

The tW+MET and tf+MET analyses

- Interested in two similar final states with top quarks and Dark Matter:
 - tW + DM and tf+ DM
 - tt+ and tW signals mix at NLO in the SM

Some diagrams contributing to tW at NLO with a tt pair

- Two independent ATLAS searches:
 - tW+MET: ongoing in the exotics group [Glance page]
 - tt+MET: ongoing in the SUSY group [INT note]
- Two different Dark Matter models
 - Simplified spin-0 pseudoscalar model and 2HDM+a

UPPSALA

UNIVERSITET

The models

Simplified spin-0 pseudoscalar model

- Extends the SM by adding
 - Dirac DM fermion χ
 - pseudoscalar singlet a
- a mediates the interaction between χ and SM particles
- Model used in tt+MET analysis
- arXiv:1507.00966

arXiv:1701.05195

The models

Figure 2: Representative diagrams for tW production of DM in association with a single top quark and a W boson.

arXiv:1712.03874

2HDM+a

- Extends the SM by adding
 - an additional Higgs doublet
 - Pseudoscalar P
 - Dirac DM fermion χ
- Particle content:
 - Neutral scalar H
 - Charged scalars H ±
 - Pseudoscalar A
 - Pseudoscalar a (mediator between χ and SM particles)
 - Higgs boson h
- Model used in tW+MET analysis
- arXiv:1810.09420

Objective of this thesis

- Investigate the overlap between the two analyses
 In both Dark Matter models
 - Only at generation level

First study of its kind in ATLAS

Event generation

- Generated 6 samples with 10 000 events each. For each final state:
 - 2HDM+a with pseudoscalar masses $m_{a}\text{=}250$ GeV, $m_{A}\text{=}350$ GeV, DM mass 10 GeV
 - 2HDM+a with pseudoscalar masses $m_{a}\text{=}250$ GeV, $m_{A}\text{=}1200$ GeV, DM mass 10 GeV
 - Simplified model with pseudoscalar mass m_a=250 GeV, DM mass 10 GeV Benchmark scenarios suggested by HQT group
- Madgraph5_AMC@NLO + Pythia8
- Generated at LO

Model	Final state	Number of	M_{H^\pm}	Cross-section	Filter
		generated events		(pb)	efficiency
Simplified	tt + DM	10,000	-	0.1165	0.6707
Simplified	tW + DM	10,000	-	0.0300	0.7907
2HDM+a	tt + DM	10,000	$350 {\rm GeV}$	0.0433	0.7265
2HDM+a	tW + DM	10,000	$350 {\rm GeV}$	0.0335	0.5457
2HDM+a	tt + DM	10,000	$1200 { m ~GeV}$	0.0308	0.7217
2HDM+a	tW + DM	10,000	$1200~{\rm GeV}$	0.0230	0.8723

Event preselection

- Study made in the semileptonic final state events with one lepton and the lepton is required to be a muon
- Event selection was made with the following object definitions
 - Similar object definitions in both analyses
 - When differing, the wider one was chosen

	$p_T \; [{ m GeV}]$	$ \eta $	Criterion
Muons	> 3	< 2.8	MuLoose
Electrons	> 3	< 2.47	ELooseBLLH
Taus	> 20	< 2.5	One or three tracks
Baseline jets	> 20	2.8	
b-jets	> 20	2.5	BTag77MV2c10

Kept only events that contain exactly one baseline muon and no additional leptons

Distributions after preselection

- Some basic kinematic distributions after preselection across models and final states:
 - Muon pT
 - Leading jet pT
 - Leading b-jet pT
 - Number of jets
 - Number of b-jets
 - MET

Number of jets

Exactly one lepton, which is a muon Histograms normalized to 1

Jets: pT > 20 GeV, |eta|< 2.8

Olga Sunneborn Gudnadottir

Number of b-jets

Exactly one lepton, which is a muon Histograms normalized to 1

Olga Sunneborn Gudnadottir

Number of b-jets

Exactly one lepton, which is a muon

Histograms normalized to 1

Exactly one lepton, which is a muon

Histograms normalized to 1

The rest in back-up...

Olga Sunneborn Gudnadottir

UPPSALA

Signal region definition

- Defined two signal regions "tWMET" and "ttMET"
- Based on the two analyses
 - Simplified in the tt + MET case
 - The full selection contains variables discriminating against background, which is not present in this study
 - tW + MET is currently being optimized

	ttMET	tWMET
Muon p _T	$27{ m GeV}$	$30{ m GeV}$
$ \qquad \text{Muon} \eta $	2.7	2.7
Muon criteria	MuMedium or MuIsoFixedCutTightTrackOnly	MuMedium
Number of jets	≥ 4	≥ 3
Number of b-tags	≥ 2	≥ 1
$\mathbf{Jet} \ \mathbf{p}_{\mathrm{T}}$	$>(80,60,30,25){ m GeV}$	$> 20 \mathrm{GeV}$
Leading b-jet p_T	$> 80{ m GeV}$	$> 50 \mathrm{GeV}$
MET	$230{ m GeV}$	$250{ m GeV}$

ttMET signal region

• Normalized to 150 /fb

UPPSALA

- (% relative efficiency/% absolute efficiency)
- Statistical uncertainty only

	Simplified	Simplified	$_{2HDM+a}$	$_{2HDM+a}$	2HDM+a	2HDM+a
	model	model	$\rm m_{H^{\pm}}{=}350GeV$	$\rm m_{H^{\pm}}{=}350GeV$	$\mathrm{m}_{\mathrm{H}\pm}^{}{=}1200\mathrm{GeV}$	$\mathrm{m}_{\mathrm{H}\pm}\!=\!1200\mathrm{GeV}$
	$t\bar{t}+MET$	tW+MET	$t\bar{t}+MET$	tW+MET	$t\bar{t}+MET$	tW+MET
Initial	$11720 {\pm} 108$	3552 ± 60	4722 ± 69	2744 ± 52	$3334{\pm}58$	3008 ± 55
Pre-selection	$2379 {\pm} 49$	676 ± 26	925 ± 30	627 ± 25	654 ± 26	553 ± 24
	(20%/100%)	(19%/100%)	(20%/100%)	(23%/100%)	(20%/100%)	(18%/100%)
After cuts on	1800 ± 42	547 ± 23	741 ± 27	505 ± 22	505 ± 22	$474\pm~22$
$muon p_T$	(76%/76%)	(81%/81%)	(80%/80%)	(81%/81%)	(77%/77%)	(86%/86%)
After cuts on number	846 ± 29	129 ± 11	416 ± 20	112 ± 11	286 ± 17	102 ± 10
of jets/b-jets	(57%/20%)	(24%/19%)	(56%/45%)	(22%/18%)	(57%/44%)	(22%/19%)
After cuts on jet \mathbf{p}_{T}	479 ± 22	84 ± 9	289 ± 17	72 ± 9	196 ± 14	69 ± 8
	(40%/8%)	(65%/12%)	(70%/31%)	(65%/12%)	(69%/30%)	(68%/13%)
After cuts on MET	192 ± 14	42 ± 7	132 ± 11	22 ± 5	85 ± 9	$44{\pm}7$
	(65%/12%)	(50%/6%)	(46%/14%)	(30%/3%)	(43%/13%)	(63%/8%)

- tt+MET analysis optimized for simplified model
- Largest tW contribution (~50% of the tt signal) for the 2HDM+a with high mass pseudoscalar

tWMET signal region

• Normalized to 150 /fb

UPPSAL

- (% relative efficiency/% absolute efficiency)
- Statistical uncertainty only

	Simplified	Simplified	2HDM+a	2HDM+a	2HDM+a	2HDM+a
	model	model	$\mathrm{m}_{\mathrm{H}\pm}^{}{=}350\mathrm{GeV}$	$\mathrm{m}_{\mathrm{H}\pm}^{}{=}350\mathrm{GeV}$	$\mathrm{m}_{\mathrm{H}\pm}^{}{=}1200\mathrm{GeV}$	$\mathrm{m}_{\mathrm{H}\pm}^{}{=}1200\mathrm{GeV}$
	tW+MET	$t\bar{t}+MET$	tW+MET	$t\bar{t}+MET$	tW+MET	$t\bar{t}+MET$
Initial	3552 ± 60	$11720{\pm}108$	$2744{\pm}52$	4722 ± 69	3008 ± 55	3334 ± 58
Pre-selection	676 ± 26	2379 ± 49	627 ± 25	925 ± 30	553 ± 24	654 ± 26
	(19%/100%)	(20%/100%)	(23%/100%)	(20%/100%)	(18%/100%)	(20%/100%)
After cuts on	526 ± 23	$1699 {\pm} 41$	477 ± 22	702 ± 26	461 ± 21	483 ± 22
$muon p_T$	(78%/78%)	(71%/71%)	(76%/76%)	(76%/76%)	(84%/84%)	(74%/74%)
After cuts on number	433 ± 21	1558 ± 39	382 ± 20	655 ± 26	377 ± 19	453 ± 21
of jets/b-jets	(82%/64%)	(92%/65%)	(80%/61%)	(93%/71%)	(82%/68%)	(94%/69%)
After cuts on jet \mathbf{p}_{T}	342 ± 18	1346 ± 37	301 ± 17	583 ± 24	300 ± 17	411 ± 20
	(79%/51%)	(86%/57%)	(79%/48%)	(89%/63%)	(80%/54%)	(91%/63%)
After cuts on MET	139 ± 12	$336{\pm}18$	301 ± 7	187 ± 14	160 ± 13	120 ± 11
	(41%/21%)	(25%/14%)	(18%/9%)	(32%/20%)	(53%/29%)	(29%/18%)

- tt a large background in tW
 - Most in the simplified model (more than double the signal!)
- The 2HDM+a scenario with lower mass mediator has the best tW/tt ratio (60% tt)

Conclusion and discussion

- Studied the overlap of the signal regions of two Dark Matter searches in ATLAS – tW + MET, tt + MET – in the context of two different BSM models
- Overlap across signal regions found in both models
- Caveats:
 - No discriminating variables from tt+MET taken into account
 - No optimization made in tW+MET signal region at the time of the study
 - Study done only at the generation level
 - Statistically limited more events should be simulated
 - LO study even more overlap at NLO
- More sophisticated methods should be used in order to follow up this study
 - If these still show a significant overlap, the sensitivity of these Dark Matter searches could be improved by combining both final states

Finally, a thank you to my supervisor Rebeca Gonzalez Suarez, my subject reader Arnaud Ferrari, and the ATLAS group at UU

BACKUP

Number of jets

Exactly one lepton, which is a muon

Histograms normalized to 1

Jets: pT > 20 GeV, |eta| < 2.8

Olga Sunneborn Gudnadottir

UPPSALA

Exactly one lepton, which is a muon

Jets: pT > 20 GeV, |eta|< 2.8

Olga Sunneborn Gudnadottir

UPPSALA

Exactly one lepton, which is a muon

Histograms normalized to 1

Olga Sunneborn Gudnadottir

UPPSALA

MET

Exactly one lepton, which is a muon

Muon pT

Exactly one lepton, which is a muon

Histograms normalized to 1

UPPSALA

Muon pT

Exactly one lepton, which is a muon

Number of b-jets

Exactly one lepton, which is a muon

Histograms normalized to 1

UPPSALA

Number of b-jets

Exactly one lepton, which is a muon

Olga Sunneborn Gudnadottir

Leading Jet pT

Exactly one lepton, which is a muon

Histograms normalized to 1

Jets: pT > 20 GeV, |eta| < 2.8

Olga Sunneborn Gudnadottir

UPPSALA

Leading jet pT

Exactly one lepton, which is a muon

Jets: pT > 20 GeV, |eta|< 2.8

Leading b-jet pT

Exactly one lepton, which is a muon

Histograms normalized to 1

Jets: pT > 20 GeV, |eta| < 2.8

Olga Sunneborn Gudnadottir

UPPSALA

Leading b-jet pT

Exactly one lepton, which is a muon

Parameters

UPPSALA

UNIVERSITET

THDMparams = {}

- THDMparams['gPXd'] = 1.0 # The coupling of the additional pseudoscalar mediator to dark matter (DM). This coupling is called \$y_\chi\$ in (2.5) of arXiv:1701.07427.
- THDMparams['tanbeta'] = 1.000000 # The ratio of the vacuum expectation values of the Higgs doublets \$H_2\$ and \$H_1\$, as defined in Section 2.1 of arXiv:1701.07427.
- THDMparams['sinbma'] = 1.0 # The sine of the difference of the mixing angles in the scalar potential containing only the Higgs doublets. This quantity is defined in Section 3.1 of arXiv:1701.07427.
- THDMparams['lam3'] = 3.0 # The quartic coupling of the scalar doublets \$H_1\$ and \$H_2\$. This parameter corresponds to the coefficient \$\lambda_3\$ in (2.1) of arXiv:1701.07427.
- THDMparams['laP1'] = 3.0 # The quartic coupling between the scalar doublets \$H_1\$ and the pseudoscalar \$P\$. This parameter corresponds to the coefficient \$\lambda_{P1}\$ in (2.2) of arXiv:1701.07427.

- THDMparams['sinp'] = 0.707100 # The sine of the mixing angle theta, as defined in Section 2.1 of arXiv:1701.07427.
- THDMparams['MXd'] = 10.000000 # The mass of the fermionic DM candidate denoted by \$m_\chi\$ in arXiv:1701.07427.
- THDMparams['mh1'] = 125. # The mass of the lightest scalar mass eigenstate \$h\$, which is identified in arXiv:1701.07427 with the Higgs-like resonance found at the LHC.
- THDMparams['mh2'] = 1200.000000 # The mass of the heavy scalar mass eigenstate \$H\$. See Section 2.1 of arXiv:1701.07427 for further details.
- THDMparams['mh3'] = 1200.000000 # The mass of the heavy pseudoscalar mass eigenstate \$A\$. See Section 2.1 of arXiv:1701.07427 for further details.
- THDMparams['mhc'] = 1200.000000 # The mass of the charged scalar eigenstate \$H^\pm\$. See Section 2.1 of arXiv:1701.07427 for further details.
- THDMparams['mh4'] = 250.000000 # The mass of the pseudoscalar mass eigenstate \$a\$ that decouples for \$\sin heta = 0\$. See Section 2.1 of arXiv:1701.07427 for further details.

evt_multiplier = 10

include("MadGraphControl_Pythia8EvtGen_NNPDF30Io_A14NNPD F23LO_2HDMa_tWDM.py")

Samples – 2HDM+a

Generation

if (filter_string == "1L0L"):
 evgenLog.info('1lepton and MET 60 filter or MET
150 is applied')
 include ('MC15JobOptions/LeptonFilter.py')
 filtSeq.LeptonFilter.Ptcut = 20000.
 filtSeq.LeptonFilter.Etacut = 2.8

```
include('MC15JobOptions/MissingEtFilter.py')
filtSeq.MissingEtFilter.METCut = 60000.
```

```
filtSeq += MissingEtFilter("MissingEtFilterHard")
filtSeq.MissingEtFilterHard.METCut = 150000.
```

```
filtSeq.Expression = "(LeptonFilter and
MissingEtFilter) or MissingEtFilterHard"
```

Olga Sunneborn Gudnadottir

Samples – 2HDM+a

Generation

if (filter_string == "1LOL"):
 mscard.write("""
 set max_weight_ps_point
400 # number of PS to estimate
the maximum for each event
 set
seed %i

specify the decay for the final state particles

define vl = ve vm vt
define vl~ = ve~ vm~ vt~
define l+ = e+ mu+ ta+
define l- = e- mu- tadecay t > w+ b, w+ > l+ vl
decay t~ > w- b~, w- > l- vl~
decay w+ > l+ vl
decay w- > l- vl~
running the
actual code
launch"""%runArgs.randomSeed)
mscard.close()

Olga Sunneborn Gudnadottir

Samples – Simplified model

tW + MET generation

```
elif model string == "Wtpseudo":
  fcard.write("""
import model DMPseudoscalarMed loop --modelname
define p = g u c d s u \sim c \sim d \sim s \sim b b \sim
define j = g u c d s u \sim c \sim d \sim s \sim b b \sim
generate p p > t w- chi~ chi
add process p p > t~ w+ chi~ chi
output -f
"""\
  xptb = 0
  ptj = 20
  drjj = 0.4
  nJetMax=0
  ktdurham=0
  dokt = "F"
  lhaid = "263000"
  maxjetflavor = "5"
  evgenConfig.process = "pp>tWchichi"
```

tt + MET generation

elif model_string == "ttpseudo": fcard.write(""" import model DMPseudoscalarMed loop --modelname define $p = g u c d s u \sim c \sim d \sim s \sim b b \sim$ define $j = g u c d s u \sim c \sim d \sim s \sim b b \sim$ generate p p > t t~ chi chi~ add process p p > t t~ j chi chi~ output -f """\ xptb = 0ptj = 20nJetMax=1 ktdurham=40 if mphi/4 > 40: ktdurham = mphi/4 evgenLog.info('ktdurham set to %i' %ktdurham) process="pp>{phi,100000}tt~" removedecays = "on" dokt = "T"lhaid = "263000" maxjetflavor = "5" evgenConfig.process = "pp>ttchichi"

Samples – Simplified model

Generation

if (filter_string == "1LMET60orMET150"):
 evgenLog.info('1lepton and MET 60 filter or MET 150 is applied')
 include ('MC15JobOptions/LeptonFilter.py')
 filtSeq.LeptonFilter.Ptcut = 20000.
 filtSeg.LeptonFilter.Etacut = 2.8

include('MC15JobOptions/MissingEtFilter.py') filtSeq.MissingEtFilter.METCut = 60000.

filtSeq += MissingEtFilter("MissingEtFilterHard") filtSeq.MissingEtFilterHard.METCut = 150000.

filtSeq.Expression = "(LeptonFilter and MissingEtFilter) or MissingEtFilterHard"

Olga Sunneborn Gudnadottir

Definitions and values of parameters in the 2HDM+a model Definition Symbol Value mixing angle of the two neutral CP-even weak eigen- $\cos(\beta - \alpha) = 0$ α states mixing angle of the two neutral CP-odd weak eigen- $\boldsymbol{\theta}$ varied states ratio of the vacuum expectation values of the two $\tan\beta$ varied Higgs doublets electroweak vacuum expectation value 246 GeV v quartic coupling between the scalar doublets H_1 and $=\lambda_3$ $\lambda_{\rm P1}$ the additional pseudo-scalar quartic coupling between the scalar doublets H_1 and $=\lambda_3$ $\lambda_{\rm P2}$ the additional pseudo-scalar The quartic coupling between the scalar doublets H_1 3 λ_3 and H_2 coupling between the DM and the additional pseudo-1 y_{χ} scalar mass of the lightest CP-even mass eigenstate 125 GeV m_h mass of the heaviest CP-even mass eigenstate m_H $= m_A$ mass of the heaviest CP-odd mass eigenstate varied m_A mass of the lightest CP-odd mass eigenstate varied m_a mass of the charged Higgs eigenstate $m_{H^{\pm}}$ $= m_A$ mass of the DM particle 10 GeV m_{χ}