

Higgs boson pair production at the LHC: experimental overview

Arnaud Ferrari Uppsala University, Sweden

UU-HEP seminar, 07/11/2019

Outline

• Introduction

• ATLAS and CMS searches for HH in the $bbbb,\,bb\tau\tau$ and $bb\gamma\gamma$ decay channels with up to 36/fb of 13 TeV pp collision data

 \bullet Combination of HH searches in ATLAS and CMS with up to 36/fb of 13 TeV pp collision data

- \bullet First HH search results with the full LHC Run-2 dataset
- \bullet Prospect studies for HH searches at the HL-LHC (and beyond)
- Conclusion and back-up slides

Introduction

Reminder: the Higgs potential

After discovering the Higgs boson, the ultimate probe of the Standard Model is to fully measure the Higgs potential.

$$V(\Phi) = -\frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\lambda \Phi^4 \stackrel{\Phi \to v+H}{=} \lambda v^2 H^2 + \frac{\lambda v H^3}{4} + \frac{1}{4}\lambda H^4$$

mass term
$$\frac{1}{2}m_H^2 H^2$$
 self-interaction terms

 $\to v=\mu/\sqrt{\lambda}=246$ GeV and $\lambda=m_H^2/(2v^2)=0.13$ fully determine the shape of the Higgs potential.

 \implies In order to further test the Standard Model, one must observe $H \rightarrow HH!$

A. Ferrari (UU)

SM Higgs boson pair production

Gluon-gluon fusion:

Due to the destructive interference between the Higgs boson self-coupling and box diagrams, the SM cross-section for Higgs boson pair production is very small, i.e. about three orders of magnitude less than for single Higgs boson production.

<u>√s</u>	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
σ _{NNLO FTapprox} [fb]	6.572	9.441	31.05	36.69	139.9	1224
Scale unc.	-6.5%+3.0%	-6.1%+2.8%	-5.0%+2.2%	-4.9% +2.1%	-3.9% +1.3%	-3.2%+0.9%
PDF unc.	±3.5%	±3.1%	±2.1%	±2.1%	±1.7%	±1.7%
αS unc.	±2.6%	±2.4%	±2.1%	±2.1%	±1.8%	±1.7%
PDF+aS unc.	±4.3%	±3.9%	±3.0%	±3.0%	±2.5%	±2.4%
mtop unc.	±2.2%	±2.3%	±2.6%	±2.7%	±3.4%	±4.6%

From https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH

Other production modes: even smaller cross-sections...

BSM Higgs boson pair production

Enhancements of the HH production cross-section and modified kinematics (e.g. m_{HH} , $p_T^{H(H)}$) could occur through variations of the top-Yukawa- and/or Higgs-self-couplings, as well as new vertices (e.g. in Effective Field Theories).

Resonant Higgs boson pair production:

- ▶ Randall-Sundrum graviton (spin-2): $G \rightarrow HH$
- ▶ 2HDM heavy Higgs boson (spin-0): $X \to HH$

A. Ferrari (UU)

Overview of HH search channels

	bb	ww	π	zz	٧٧
bb	33%				
ww	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

Run-1 legacy – ATLAS:

Analysis	$\gamma\gamma bb$	$\gamma \gamma WW^*$	$bb\tau\tau$	bbbb	Combined
		Upper limit o	n the cross s	section [pb]	
Expected	1.0	6.7	1.3	0.62	0.47
Observed	2.2	11	1.6	0.62	0.69
	Upper limi	t on the cross s	ection relati	ve to the S.	M prediction
Expected	100	680	130	63	48
Observed	220	1150	160	63	70

Phys. Rev. D 92, 092004 (2015)

Many final states to explore... The main focus of this talk is the *non-resonant* HH production mode and reviews of:

- **b** bbbb, $bb\gamma\gamma$ and $bb\tau\tau$ with 36/fb of data;
- statistical combinations with 36/fb of data;
- new results with the full Run-2 dataset;
- prospect studies.

A. Ferrari (UU)

Overview of HH search channels

	bb	ww	π	zz	٧٧
bb	33%				
ww	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

Run-1 legacy – CMS:

- $\blacktriangleright bbbb + bb\gamma\gamma + bb\tau\tau$
- Expected: $0.47^{+0.20}_{-0.12}$ pb (47 × SM)
- ▶ Observed: 0.43 pb $(43 \times SM)$

Many final states to explore... The main focus of this talk is the *non-resonant HH* production mode and reviews of:

- **b** bbbb, $bb\gamma\gamma$ and $bb\tau\tau$ with 36/fb of data;
- statistical combinations with 36/fb of data;
- new results with the full Run-2 dataset;
- prospect studies.

See back-up for results on resonant HH...

8 / 51

Phys. Rev. D 96, 072004 (2016)

A. Ferrari (UU)

ATLAS and CMS searches for HH in the bbbb, $bb\tau\tau$ and $bb\gamma\gamma$ decay channels with up to 36/fb of 13 TeV pp collision data

$HH \rightarrow bbbb$ – event topologies

- \bullet ATLAS \rightarrow one paper [JHEP01 (2019) 030] with two event topologies:
 - ▶ Non-resonant $HH \rightarrow bbbb$ + "light" HH resonances: resolved topology.
 - ▶ Resonant production of $HH \rightarrow bbbb$ with mass $\gtrsim 1$ TeV: boosted topology.

Topology/	Resolved	Boosted
Objects	(260-1400 GeV)	(800-3000 GeV)
Triggers and	Combination of	Single large- R
corresponding	b-jet triggers	jet trigger
$\int L dt \ ({ m fb}^{-1})$	3.2 + 24.3	36.1
$N_{\rm jets}$	≥ 4 jets, $R = 0.4$	≥ 2 jets, $R = 1.0$
p_T cut	$40 {\rm GeV}$	450 / 250 GeV
b-tagging	70% for	70% on track-jets
	all jets	with $R = 0.2$
$N_{\rm b-jets}$	4	2, 3, 4

- \bullet CMS \rightarrow four papers with distinct event topologies:
 - ▶ Non-resonant HH: 35.9/fb; ≥4 jets (R = 0.4) with p_T above 30 GeV; 4 *b*-tags (resolved topology) in JHEP04 (2019) 112.
 - ▶ Resonant HH with a resolved topology in JHEP08 (2018) 052.
 - ▶ Resonant HH with two jets of R = 0.8 in Phys. Lett. B 781 (2018) 244, or using semi-resolved events in JHEP01 (2019) 040.

A. Ferrari (UU)

ATLAS non-resonant $HH \rightarrow bbbb$

Event selection:

- Selection and pairing of the 4 jets with highest b-tagging into H candidates using ΔR_{jj} , m_{4j} and differences in m_{2j} .
- ▶ m_{4j} and m_{2j} -dependent requirements on the p_T and mass of the *H* candidates \Rightarrow SR around (120 GeV; 110 GeV).
- Events in which a 3-jet combination is compatible with a top-quark decay are vetoed.

Background estimation:

- Multi-jet: weights are derived by comparing 2b+2j and 4b samples in a sideband (SB), then applied to a 2b+2j sample of the SR (one *H* from 2 *b*-jets, one *H* from 2 non-*b*-jets).
- $t\bar{t}$: simulated m_{4j} shapes (hadronic and semi-leptonic).
- Normalisation: simultaneous fit of 3 background-enriched regions of the SB.
- Validation: m_{4i} in a control region between SR and SB.

Results:

A. Ferrari (UU)

Simultaneous fit of m_{4j} in the 2015 and 2016 dataset \Rightarrow 95% CL upper limits in units of σ_{SM}^{HH} :

UU-HEP seminar, 07/11/2019

11 / 51

UU-HEP seminar, 07/11/2019

CMS non-resonant $HH \rightarrow bbbb$

Event selection:

A. Ferrari (UU)

- ▶ Triggers: OR two paths of at least 4 jets with 3 *b*-tags.
- Selection and pairing of the 4 jets with highest b-tagging into H candidates using differences in m_{2j}.
- **b** BDT classifier to separate HH from the background.

Background modelling via hemisphere mixing:

HH system	H candidates	Jet variables
$M_{\rm X}, M_{\rm HH},$	$M_{\mathrm{H}_{1}}, M_{\mathrm{H}_{2}}$	$p_{T_j}^{(i=1-4)}, \eta_j^{(i=1-4)},$
$p_{\mathrm{T}}^{\mathrm{H_1H_2}}$	$p_{ m T}^{ m H_1},p_{ m T}^{ m H_2}$	$H_{\mathrm{T}}^{\mathrm{rest}}, H_{\mathrm{T}}$
$\cos \theta^*_{\mathrm{H_1H_2-H_1}}$	$\cos \theta^*_{H_1-j_1}$	$CMVA_3, CMVA_4$
	$\Delta R_{\mathrm{jj}}^{\mathrm{H}_{1}},\Delta R_{\mathrm{jj}}^{\mathrm{H}_{2}},\Delta \phi_{\mathrm{jj}}^{\mathrm{H}_{1}},\Delta \phi_{\mathrm{jj}}^{\mathrm{H}_{2}}$	

• transverse thrust axis \rightarrow where the sum of the absolute values of the projections of the p_T of the jets is maximal;

• two hemispheres are only mixed if similar enough to original hemispheres;

• the method destroys any correlation between two hemispheres, ensuring no signal contamination;

• three new samples for: (i) BDT training, (ii) validation purposes, (iii) prediction of the optimized BDT shape.

12 / 51

$\overrightarrow{\text{CMS non-resonant } HH} \rightarrow bbbb$

Event selection:

- ▶ Triggers: OR two paths of at least 4 jets with 3 *b*-tags.
- Selection and pairing of the 4 jets with highest b-tagging into H candidates using differences in m_{2j}.
- **b** BDT classifier to separate HH from the background.

Background modelling via hemisphere mixing:

95% CL upper limits in units of $\sigma_{\rm SM}^{HH}$:

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
74.6	19.4	26.1	36.9	52.9	73.4

HH system	H candidates	Jet variables
$M_{\rm X}, M_{\rm HH},$	$M_{\mathrm{H}_{1}}, M_{\mathrm{H}_{2}}$	$p_{T_j}^{(i=1-4)}, \eta_j^{(i=1-4)},$
$p_{\mathrm{T}}^{\mathrm{H_1H_2}}$	$p_{\rm T}^{{ m H}_1},p_{ m T}^{{ m H}_2}$	$H_{\mathrm{T}}^{\mathrm{rest}}, H_{\mathrm{T}}$
$\cos \theta^*_{\mathrm{H_1H_2-H_1}}$	$\cos \theta^*_{H_1-j_1}$	$CMVA_3, CMVA_4$
	$\Delta R^{\mathrm{H}_1}_{\mathrm{jj}},\Delta R^{\mathrm{H}_2}_{\mathrm{jj}},\Delta \phi^{\mathrm{H}_1}_{\mathrm{jj}},\Delta \phi^{\mathrm{H}_2}_{\mathrm{jj}}$	

A. Ferrari (UU)

ATLAS non-resonant $HH \rightarrow bb\gamma\gamma$

Event selection:

- ▶ 2 photons (trigger and offline), $E_{\rm T}/m_{\gamma\gamma} > 0.35 / 0.25 \& m_{\gamma\gamma} \subset [105; 160]$ GeV.
- At least 2 central jets with $p_{\rm T} > 25$ GeV:
 - 2-tag: exactly 2 b-jets (70%),
 - 1-tag: fails 2-tag but has 1 b-jet (60%) + BDT to choose the second jet.
- Leading jet $p_{\rm T} > 100$ GeV, sub-leading jet $p_{\rm T} > 30$ GeV & $m_{ij} \in [90; 140]$ GeV.

The analysis strategy is to fit the $m_{\gamma\gamma}$ distribution

- Signal & single-H background: simulation, double-sided Crystal Ball function.
- Continuum background: fit to the data with a first-order exponential to minimise the spurious signal (bias from fitting a signal+background model to a background-only sample).

95% CL upper limits on $\sigma_{gg \to HH}$:

	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg \rightarrow HH}$ [pb]	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

13 / 51

[JHEP11 (2018) 040]

A. Ferrari (UU)

CMS non-resonant $HH \rightarrow bb\gamma\gamma$

Event selection and categorisation:

- ▶ 2 photons (trigger and offline), $E_{\rm T}/m_{\gamma\gamma} > 0.33/0.25$ & $m_{\gamma\gamma} \subset [100; 180]$ GeV.
- ▶ 2 b-tagged central jets with $p_{\rm T} > 25$ GeV & $m_{jj} \subset [70; 190]$ GeV after b-jet energy regression.
- $\blacktriangleright \text{ Low/high-mass regions if } \tilde{M}_X = m_{\gamma\gamma jj} (m_{\gamma\gamma} m_H) (m_{jj} m_H) \text{ is below/above 350 GeV}.$
- In each category: BDT using b-tagging, helicity and HH transverse balance input variables \rightarrow categorisation into high/medium-purity regions based on the BDT score.

Statistical analysis: 2D fit per category

A. Ferrari (UU)

- \bullet Signal (including VBF HH events): double-sided Crystal-Ball function.
- Backgrounds $(n\gamma+\text{jets and single-}H)$: Bernstein polynomial or double-sided Crystal-Ball function.
- Unbinned maximum-likelihood to the 2D $m_{\gamma\gamma}-m_{jj}$ distribution.
- \rightarrow 95% CL upper limits in units of $\sigma^{HH}_{\rm SM}:$

Observed	-1σ	Expected	$+1\sigma$
24	13	19	30

[Phys. Lett. B 788 (2019) 7]

14 / 51

ATLAS non-resonant $HH \to bb\tau\tau$

2 sub-channels ($\tau_{\ell}\tau_{h}$ & $\tau_{h}\tau_{h}$) but 3 signal regions based on the trigger:

- $\blacktriangleright \tau_\ell \tau_h$ channel:
 - Single-lepton trigger (SLT)
 - If !SLT, lepton+ τ trigger (LTT)
- $\blacktriangleright \ \tau_h \tau_h$ channel:
 - Single- (STT) or di- τ (DTT) trigger

- \blacktriangleright $\ell + \tau_h$ or $2 \tau_h$ opposite-sign systems;
- Trigger-dependent cuts on $(p_T^{\ell}; p_T^{\tau_h})$ or $p_T^{\tau_{1(2)}};$
- ▶ ≥2 jets, $p_T^{j_{1(2)}} > 45-80$ (20) GeV;
- ▶ 2 *b*-jets and $m_{\tau\tau}^{\text{MMC}} > 60$ GeV.

BDTs are used to separate the signal from the following backgrounds:

- Top-quark backgrounds with true τ_h : simulation + normalisation from data at low BDT;
- \blacktriangleright $Z \rightarrow \tau \tau + bb/bc/cc$: simulation + normalisation from a single-bin $Z \rightarrow \mu \mu + bb$ region in data;
- ▶ Jet \rightarrow fake τ_h : (semi-)data-driven methods... and all other backgrounds from simulation.

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \rightarrow bb\tau\tau)$ [fb]	57	49.9	69	96
⁷ lep ⁷ had	$\sigma/\sigma_{\rm SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \rightarrow bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
⁷ had ⁷ had	σ/σ_{SM}	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \rightarrow bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Combination	σ/σ_{SM}	12.7	10.7	14.8	20.6

Most stringent limits at the LHC: obs. (exp.): $12.7(14.8) \times \sigma_{SM}^{HH}$ [Phys. Rev. Lett. 121, 191801]

15 / 51

A. Ferrari (UU)

CMS non-resonant $HH \rightarrow bb\tau\tau$

Event selection:

- Three sub-channels $(\tau_e \tau_h, \tau_\mu \tau_h \& \tau_h \tau_h)$, with neither LTT nor STT trigger;
- $\blacktriangleright \ p_T(e/\mu) > 27/23 \ \text{GeV}; \ p_T(\tau_h) > 20 \ \text{GeV} \ [\tau_\ell \tau_h] \ \text{or} \ 45 \ \text{GeV} \ [\tau_h \tau_h]; \ p_T(j_{1,2}) > 20 \ \text{GeV};$
- Two SR categories (\geq 2b and 1b1j), where the two jets can be resolved or merged;
- Elliptic cut in the $(m_{\tau\tau}; m_{bb})$ plane, where $H \to \tau\tau$ is reconstructed with SVfit;
- \bullet $\tau_{\ell}\tau_{h}$: cut on a BDT score to reduce $t\bar{t}$, fit the stransverse mass m_{T2} ;
- $\blacktriangleright \tau_h \tau_h: \text{ fit } m_{T2}.$

Backgrounds:

- \blacktriangleright $Z \rightarrow \tau \tau + bb/bc/cc$: simulation + data-driven correction of the jet emission model;
- Multi-jet from SS data (yield correction using OS/SS events with inverted τ isolation);
- All other backgrounds from simulation.

95% CL upper limits in units of $\sigma_{\rm SM}^{HH}$:

Observed	-1σ	Expected	$+1\sigma$
31	17	25	37

[Phys. Lett. B 778 (2018) 101]

A. Ferrari (UU)

Combination of HH searches in ATLAS and CMS with up to 36/fb of 13 TeV pp collision data

CMS - non-resonant HH - combination

Combination of the 3 most sensitive channels $(bb\gamma\gamma, bb\tau\tau \text{ and } bbbb)$ with a sub-leading di-lepton bbVV channel:

A. Ferrari (UU)

CMS - non-resonant HH - EFTs (1)

CMS considers new couplings derived from dimension-6 operators (EFT):

$$\mathcal{L}_{\rm HH} = \underline{\kappa_{\lambda}} \lambda_{\rm HHH}^{\rm SM} v H^{3} - \frac{m_{\rm t}}{v} (\underline{\kappa_{\rm t}} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{\rm L} t_{\rm R} + {\rm h.c.}) + \frac{1}{4} \frac{\alpha_{S}}{3\pi v} (\underline{c_{\rm g}} H - \frac{c_{2g}}{2v} H^{2}) G^{\mu\nu} G_{\mu\nu}$$

EFT couplings yield different m_{HH} and $\cos \theta_H^*$ distributions, but they can be clustered into 12 typical shape benchmarks after a full scan.

A. Ferrari (UU)

CMS has published limits on non-resonant HH for every shape benchmark:

CMS - non-resonant HH - EFTs (1)

CMS considers new couplings derived from dimension-6 operators in SMEFT:

$$\mathcal{L}_{\rm HH} = \underbrace{\kappa_{\lambda}} \lambda_{\rm HHH}^{\rm SM} v \, H^3 - \frac{m_{\rm t}}{v} \underbrace{(\kappa_{\rm t}} H + \frac{c_2}{v} H^2) \left(\bar{t}_{\rm L} t_{\rm R} + {\rm h.c.}\right) + \frac{1}{4} \frac{\alpha_S}{3\pi v} \underbrace{(c_{\rm g})}_{cg} H - \frac{c_{2g}}{2v} H^2 G^{\mu\nu} G_{\mu\nu}$$

EFT couplings yield different m_{HH} and $\cos \theta_H^*$ distributions, but they can be clustered into 12 typical shape benchmarks after a full scan.

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	$^{-1}$
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	$^{-1}$	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	$^{-1.0}$	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

CMS has published limits on non-resonant HH for every shape benchmark:

CMS - non-resonant HH - EFTs (2)

At LO, $\sigma(gg \to HH)$ can be expressed as a function of the EFT couplings.

$$\begin{aligned} R_{hh} &\equiv \frac{\sigma_{hh}}{\sigma_{hh}^{SM}} = \text{Poly}(\mathbf{A}) = A_1 \, \kappa_t^4 + A_2 \, c_2^2 + (A_3 \, \kappa_t^2 + A_4 \, c_g^2) \, \kappa_\lambda^2 + A_5 \, c_{2g}^2 + (A_6 \, c_2 + A_7 \, \kappa_t \kappa_\lambda) \kappa_t^2 \\ &+ (A_8 \, \kappa_t \kappa_\lambda + A_9 \, c_g \kappa_\lambda) c_2 + A_{10} \, c_2 c_{2g} + (A_{11} \, c_g \kappa_\lambda + A_{12} \, c_{2g}) \, \kappa_t^2 \\ &+ (A_{13} \, \kappa_\lambda c_g + A_{14} \, c_{2g}) \, \kappa_t \kappa_\lambda + A_{15} \, c_g c_{2g} \kappa_\lambda \end{aligned}$$

- ► Can also be applied to differential cross-sections $\Rightarrow R_{HH}^{j} = \text{Poly}(\mathbf{A}^{j})$ [arxiv:1710.08261].
- Emulate any EFT parameters via reweighting based on true m_{HH}^i and $\cos \theta_i^*$ at LO from an ensemble of shape benchmarks.

Setting all other EFT couplings to their SM value, a scan of the Higgs boson self-coupling leads to observed (expected) κ_{λ} -values to be constrained @ 95% CL to:

$$-11.8 < \kappa_{\lambda} < 18.8 \ (-7.1 < \kappa_{\lambda} < 13.6)$$

21 / 51

ATLAS - non-resonant HH - combination

Combination of the 3 most sensitive channels $(bb\tau\tau, bbbb$ and $bb\gamma\gamma)$ with 3 sub-leading channels (multi-lepton WWWW, single-lepton WW $\gamma\gamma$ and single-lepton bbWW):

Phys. Rev. Lett. 121, 191801
JHEP01 (2019) 030
JHEP11 (2018) 040
JHEP05 (2019) 124
Eur. Phys. J. C 78 (2018) 1007
JHEP04 (2019) 092

https://arxiv.org/abs/1906.02025

A. Ferrari (UU)

ATLAS - non-resonant HH - variation of the Higgs boson self-coupling

Variations of κ_{λ} affect the interference, hence m_{HH} and the signal acceptances.

A. Ferrari (UU)

Currently, the LO mode of MG5_aMC@NLO is used, in which BSM couplings are switched-off, with varied κ_{λ} values. A linear combination of 3 samples is performed, followed by a m_{HH} reweighting of the NLO SM sample.

A dedicated NLO POWHEG package with varied κ_λ is available for the end-of-Run-2 analyses.

ATLAS - non-resonant HH - variation of the Higgs boson self-coupling

Variations of κ_{λ} affect the interference, hence m_{HH} and the signal acceptances.

A. Ferrari (UU)

With $\kappa_t = 1$, the Higgs boson self-coupling is observed (expected) to be constrained @ 95% CL to:

$$-5.0 < \kappa_\lambda < 12.0 \ (-5.8 < \kappa_\lambda < 12.0)$$

κ_λ also has an impact on single-Higgs-boson production and decays at electroweak NLO!

Using the framework of Eur. Phys. J. C 77 (2017) 887, global fit of κ_{λ} based on combined single-Higgs-boson measurements (including event kinematic information) in 36–80/fb of data: ATL-PHYS-PUB-2019-009.

► Observed (expected) 95% CL interval constraint: $-3.2 < \kappa_{\lambda} < 11.9 \ (-6.2 < \kappa_{\lambda} < 14.4).$

▶ Negative log-likelihood contours either in $(\kappa_{\lambda}, \kappa_{F})$ with $\kappa_{V} = 1$ or in $(\kappa_{\lambda}, \kappa_{V})$ with $\kappa_{F} = 1$.

-10 -5 0 5 10 15 20

0.85

κ_{λ} also has an impact on single-Higgs-boson production and decays at electroweak NLO!

Using the framework of Eur. Phys. J. C 77 (2017) 887, global fit of κ_{λ} based on combined single-Higgs-boson measurements (including event kinematic information) in 36–80/fb of data: ATL-PHYS-PUB-2019-009.

- ► Observed (expected) 95% CL interval constraint: -3.2 < κ_{λ} < 11.9 (-6.2 < κ_{λ} < 14.4).
- ▶ Negative log-likelihood contours either in $(\kappa_{\lambda}, \kappa_{F})$ with $\kappa_{V} = 1$ or in $(\kappa_{\lambda}, \kappa_{V})$ with $\kappa_{F} = 1$.

Next: combine the single- and double-Higgs-boson measurements/searches: ATLAS-CONF-2019-049.

Analysis	Integrated luminosity (fb ⁻¹)	Ref.
$H \rightarrow \gamma \gamma$ (excluding $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8	[21,22]
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8	[23, 24]
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	36.1	[25]
$H \rightarrow \tau^+ \tau^-$	36.1	[26]
$VH, H \rightarrow b\bar{b}$	79.8	[27, 28]
$t\bar{t}H, H \rightarrow b\bar{b}$	36.1	[29]
$t\bar{t}H, H \rightarrow multilepton$	36.1	[30]
$HH \rightarrow b\bar{b}b\bar{b}$	27.5	[31]
$HH \rightarrow b\bar{b}\tau^+\tau^-$	36.1	[32]
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1	[33]

- ▶ Observed (expected) 95% CL interval constraint: -2.3 < κ_{λ} < 10.3 (-5.1 < κ_{λ} < 11.2).
- ▶ Likelihood fit with other couplings set to SM values:

 $\kappa_{\lambda} = 4.6^{+2.9}_{-3.5}({\rm stat.})^{+1.2}_{-1.2}({\rm exp.})^{+0.7}_{-0.5}({\rm sig.~th.})^{+0.6}_{-1.0}({\rm bkg.~th.})$

▶ Generic model: κ_W , κ_Z , κ_t , κ_b , κ_ℓ and κ_λ are fitted simultaneously.

Model	$\kappa_{W-1\sigma}^{+1\sigma}$	$\kappa_{Z-1\sigma}^{+1\sigma}$	$\kappa_{t-1\sigma}^{+1\sigma}$	$\kappa_{b-1\sigma}^{+1\sigma}$	$\kappa_{\ell - 1\sigma}^{+1\sigma}$	$\kappa_{\lambda-1\sigma}^{ +1\sigma}$	$\kappa_\lambda~[95\%~{\rm CL}]$	
r. only	x-only 1 1 1 1 1	1	$4.6^{+3.2}_{-3.8}$	[-2.3, 10.3]	obs.			
κ_{λ} -omy		1	1	1	1	$1.0^{+7.3}_{-3.8}$	[-5.1, 11.2]	exp.
Ceneric	$1.03^{+0.08}_{-0.08}$	$1.10\substack{+0.09\\-0.09}$	$1.00\substack{+0.12\\-0.11}$	$1.03_{-0.18}^{+0.20}$	$1.06\substack{+0.16\\-0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5]	obs.
Generic	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.12}_{-0.12}$	$1.00_{-0.19}^{+0.21}$	$1.00^{+0.16}_{-0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6]	exp.

A. Ferrari (UU)

First HH search results with the full LHC Run-2 dataset

New ATLAS non-resonant HH search result based on the full Run-2 dataset (139/fb): https://arxiv.org/abs/1908.06765

Event selection and analysis strategy:

- ▶ Signal = $H \rightarrow bb + H \rightarrow \ell \ell \nu \nu$ (via WW^* , ZZ^* or $\tau \tau$).
- ▶ Single- or di-lepton trigger; 2 OS electrons and/or muons & ≥2 *b*-jets; $m_{\ell\ell} \subset [20; 60]$ GeV & $m_{b_1b_2} \subset [110; 140]$ GeV;
- ▶ Define regions with same- or different-flavour (SF vs DF) leptons;

▶ Main backgrounds after the event pre-selection:

- di-lepton $t\bar{t} \& Wt = \text{Top};$
- $Z/\gamma^* \to ee, \ \mu\mu + \text{jets} = Z\ell\ell;$
- $Z/\gamma^* \to \tau \tau + \text{jets} = Z \tau \tau$.
- $\Rightarrow \text{ DNN classifier to distinguish} \\ HH \rightarrow bbWW^* \rightarrow bb\ell\nu\ell\nu \\ \text{from the 3 main backgrounds.}$

(p_T, η, ϕ)	p_T , η , and ϕ of the leptons, leading two signal jets, and leading two b-tagged jets
Dilepton flavour	Whether the event is composed of two electrons, two muons, or one of each
$\Delta R_{\ell\ell}, \Delta \phi_{\ell\ell} $	ΔR and magnitude of the $\Delta \phi$ between the two leptons
$m_{\ell\ell}, p_T^{\ell\ell}$	Invariant mass and the transverse momentum of the dilepton system
$E_T^{miss}, E_T^{miss} - \phi$	Magnitude of the missing transverse momentum vector and its ϕ component
$ \Delta \phi(\mathbf{p}_T^{\text{miss}}, \mathbf{p}_T^{\ell \ell}) $	Magnitude of the $\Delta \phi$ between the \mathbf{p}_T^{miss} and the transverse momentum of the dilepton system
$ \mathbf{p}_{T}^{\text{miss}} + \mathbf{p}_{T}^{\ell \ell} $	Magnitude of the vector sum of the \mathbf{p}_{T}^{miss} and the transverse momentum of the dilepton system
Jet multiplicities	Numbers of b-tagged and non-b-tagged jets
$ \Delta \phi_{bb} $	Magnitude of the $\Delta \phi$ between the leading two b-tagged jets
m _{T2} ^{bb}	m_{T2} using the leading two b-tagged jets as the visible inputs and \mathbf{p}_{T}^{miss} as invisible input
H_{T2}	Scalar sum of the magnitudes of the momenta of the $H \rightarrow \ell \nu \ell \nu$ and $H \rightarrow bb$ systems,
	$H_{T2} = \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}^{\ell,0} + \mathbf{p}_{T}^{\ell,1} + \mathbf{p}_{T}^{h,0} + \mathbf{p}_{T}^{h,1} $
HR	Ratio of H_{T2} and scalar sum of the transverse momenta of the H decay products,
12	$H_{T2}^{R} = H_{T2}/(E_{T}^{miss} + \mathbf{p}_{T}^{\ell,0} + \mathbf{p}_{T}^{\ell,1} + \mathbf{p}_{T}^{b,0} + \mathbf{p}_{T}^{b,1}),$
	where $\mathbf{p}_{T}^{\ell(b),0 1 }$ are the transverse momenta of the leading {subleading} lepton (b-tagged jet)

30 / 51

A. Ferrari (UU)

New ATLAS non-resonant HH search result based on the full Run-2 dataset (139/fb): https://arxiv.org/abs/1908.06765

Event selection and analysis strategy:

- Signal = $H \rightarrow bb + H \rightarrow \ell\ell\nu\nu$ (via WW^* , ZZ^* or $\tau\tau$).
- ▶ Single- or di-lepton trigger; 2 OS electrons and/or muons & ≥2 *b*-jets; $m_{\ell\ell} \subset [20; 60]$ GeV & $m_{b_1b_2} \subset [110; 140]$ GeV;
- ▶ Define regions with same- or different-flavour (SF vs DF) leptons;

▶ Main backgrounds after the event pre-selection:

- di-lepton $t\bar{t} \& Wt = \text{Top};$
- $Z/\gamma^* \to ee, \ \mu\mu + \text{jets} = Z\ell\ell;$
- $Z/\gamma^* \to \tau \tau + \text{jets} = Z \tau \tau$.
- $\Rightarrow \text{ DNN classifier to distinguish} \\ HH \rightarrow bbWW^* \rightarrow bb\ell\nu\ell\nu \\ \text{from the 3 main backgrounds.}$
- $\Rightarrow \ 4 \ \text{outputs} \ p_i \ (\text{with} \ \sum p_i = 1), \\ i \subset \{HH, \ \text{Top}, \ Z\ell\ell, \ Z\tau\tau\}.$

30 / 51

A. Ferrari (UU)

UU-HEP seminar, 07/11/2019

Besides $m_{\ell\ell}$ and m_{bb} , another discriminant in the analysis is: $d_{HH} = \ln\left(\frac{p_{HH}}{p_{\text{Top}} + p_{Z\ell\ell} + p_{Z\tau\tau}}\right)$.

- ▶ Two signal regions: SR-SF with $d_{HH} > 5.45$ & SR-DF with $d_{HH} > 5.55$;
- Two control regions: CR-Top and CR-Z+HF to normalise the corresponding backgrounds;

A. Ferrari (UU)

• Two signal-depleted validation regions to check the normalisation of the backgrounds.

31 / 51

Region Definitions							
Observable	CR-Top	VR-1	CR-Z+HF	VR-2	SR-SF	SR-DF	
Dilepton Flavour	DF	SF	DF or SF	SF	SF	DF	
$m_{\ell\ell}$ [GeV]	(20, 60)	(20, 60)	(81.2, 101.2)	(71.2, 81.2)	(20, 60)	(20, 60)	
				or (101.2, 115)			
m_{bb} [GeV]	∉ (100, 140)	> 140	(100, 140)	(100, 140)	(110, 140)	(110, 140)	
d_{HH}	> 4.5	> 4.5	> 0	> 0	> 5.45	> 5.55	
		I	Event Yields				
Data	108	171	852	157	16	9	
Total Bkg.	108 ± 10	162 ± 10	852 ± 29	147 ± 11	14.9 ± 2.1	4.9 ± 1.2	
Тор	92 ± 11	77 ± 10	55 ± 7	71 ± 10	4.8 ± 1.4	3.8 ± 1.1	
$Z/\gamma^* + HF$	3.2 ± 0.5	70 ± 4	686 ± 33	60 ± 4	7.8 ± 1.4	0.21 ± 0.05	
Other	13.1 ± 3.4	14.2 ± 1.9	110 ± 13	15.8 ± 1.2	2.3 ± 0.5	0.9 ± 0.4	
HH (×20)	2.70 ± 0.25	1.03 ± 0.22	1.97 ± 0.11	1.22 ± 0.05	5.0 ± 0.6	4.8 ± 0.8	
Post-fit Normalisation							
μ_{Top}	$0.5 = 0.79 \pm 0.10$			$\mu_{Z/\gamma^{*}+HF} = 1.$	36 ± 0.07		

Counting experiment in SRs and CRs \rightarrow 95% CL upper limits in pb and in units of σ_{SM}^{HH} :

	-20	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH) [pb]$	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma \left(gg \to HH \right) / \sigma^{\rm SM} \left(gg \to HH \right)$	14	20	29	43	62	40

31 / 51

A. Ferrari (UU)

$\text{ATLAS} - \text{VBF} \ HH \rightarrow bbbb$

New ATLAS non-resonant HH search result in the VBF channel using almost the full Run-2 dataset (126/fb): ATLAS-CONF-2019-030

The VBF channel has a very small cross-section (1.73 fb at 13 TeV in the SM) but it gives a unique opportunity to probe the c_{2V} coupling.

Event selection and analysis strategy:

- New: b-jet energy regression based on a BDT to account for effects beyond the usual calibration;
- ▶ VBF jets added to the event selection used in the search for $gg \rightarrow HH \rightarrow bbbb$:
 - ≥ 2 forward jets with $p_T > 30$ GeV, $|\eta| > 2.0$ and opposite sign of η ;
 - $|\Delta \eta_{jj}^{\rm VBF}| > 5.0$ & $m_{jj}^{\rm VBF} > 1$ TeV for the 2 highest- p_T forward jets.

32 / 51

A. Ferrari (UU)

$\text{ATLAS} - \text{VBF} \ HH \rightarrow bbbb$

- SR around (123.7 GeV; 116.5 GeV).
- Multi-jet background: weights are derived by comparing 2b + 2j and 4b samples in a sideband (SB) and applied to a 2b + 2j sample of the SR.
- tt background: shape from simulation, all-hadronic yield from data, non-all-hadronic yield from the SM prediction.
- **ggF** $HH \rightarrow bbbb$ background: simulation, normalised to the SM prediction.

Results:

A. Ferrari (UU)

Very first constraint on $c_{2V} \rightarrow$ observed (expected) between -1.02 (-1.09) and +2.71 (+2.82) at 95% CL.

Prospect studies for HH searches at the HL-LHC (and beyond)

$HH \rightarrow bbbb$

- Extrapolation of current result to 14 TeV and 3/ab.
- ▶ Improved *b*-tagging efficiency (by 8%).
- Statistical uncertainties are scaled down according to the size of the dataset, while systematic uncertainties remain the same.

Jet p_T threshold likely to go up because of trigger requirements.

$HH \to bb\tau\tau$

- Extrapolation of current result to 14 TeV and 3/ab.
- ▶ Improved *b*-tagging efficiency (by 8%).
- Re-binning of the BDT + no MC statistical uncertainty + scale down systematic uncertainties of statistical nature and from theoretical modelling.
- Tau p_T threshold likely to go up because of trigger requirements.

A. Ferrari (UU)

$HH \rightarrow bbbb$

- Extrapolation of current result to 14 TeV and 3/ab.
- ▶ Improved *b*-tagging efficiency (by 8%).
- Statistical uncertainties are scaled down according to the size of the dataset, while systematic uncertainties remain the same.

Jet p_T threshold likely to go up because of trigger requirements.

$HH \to bb\tau\tau$

- Extrapolation of current result to 14 TeV and 3/ab.
- ▶ Improved *b*-tagging efficiency (by 8%).
- Re-binning of the BDT + no MC statistical uncertainty + scale down systematic uncertainties of statistical nature and from theoretical modelling.
- Tau p_T threshold likely to go up because of trigger requirements.

A. Ferrari (UU)

Unlike $HH \rightarrow bbbb$ and $HH \rightarrow bb\tau\tau$, the prospect study of $HH \rightarrow bb\gamma\gamma$ is fully based on simulations at 14 TeV.

- Truth-level particles smeared by detector resolution (μ =200) and weighted according to efficiency or mis-tag rate;
- Two photons $(p_T > 43, 30 \text{ GeV})$, no isolated leptons and at most five central jets $(p_T > 30 \text{ GeV})$, of which at least two are *b*-tagged and have $p_T > 35 \text{ GeV}$.
- BDT + cut on its score, select $m_{\gamma\gamma} \in [123; 127]$ GeV, use $m_{bb\gamma\gamma}$ as final discriminant.

 \Rightarrow 95% CL limits at 1.2 (1.1) times $\sigma_{\rm SM}^{HH}$ with (without) systematic uncertainties.

A. Ferrari (UU)

UU-HEP seminar, 07/11/2019

37 / 51

Statistical combination of $HH \rightarrow bbbb$, $HH \rightarrow bb\tau\tau$ and $HH \rightarrow bb\gamma\gamma$:

- ▶ 95% CL limits: $0.68 (0.56) \times \sigma_{\text{SM}}^{HH}$ with (without) systematic uncertainties.
- ► Statistical significance of SM *HH* w.r.t the background-only hypothesis: Channel | Statistical-only | Statistical + Systematic

▶ The relative uncertainty on the signal strength is 40% (31%) with (without) systematic uncertainties.

HH prospects vs κ_{λ} :

- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 1$;
- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 0$;
- Significance vs κ_{λ} .

More details in ATL-PHYS-PUB-2018-053 $\,$

38 / 51

A. Ferrari (UU)

Statistical combination of $HH \rightarrow bbbb$, $HH \rightarrow bb\tau\tau$ and $HH \rightarrow bb\gamma\gamma$:

- ▶ 95% CL limits: $0.68 (0.56) \times \sigma_{\text{SM}}^{HH}$ with (without) systematic uncertainties.
- \blacktriangleright Statistical significance of SM HH w.r.t the background-only hypothesis:

▶ The relative uncertainty on the signal strength is 40% (31%) with (without) systematic uncertainties.

HH prospects vs κ_{λ} :

- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 1$;
- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 0$;
- Significance vs κ_{λ} .

More details in ATL-PHYS-PUB-2018-053 $\,$

39 / 51

A. Ferrari (UU)

Statistical combination of $HH \rightarrow bbbb$, $HH \rightarrow bb\tau\tau$ and $HH \rightarrow bb\gamma\gamma$:

- ▶ 95% CL limits: $0.68 (0.56) \times \sigma_{\text{SM}}^{HH}$ with (without) systematic uncertainties.
 - $\begin{tabular}{|c|c|c|c|c|c|c|} \hline \hline Channel & Statistical-only & Statistical + Systematic \\ \hline HH \rightarrow $b\bar{b}b\bar{b}$ & 1.4 & 0.61 \\ \hline HH \rightarrow $b\bar{b}\tau^+\tau^-$ & 2.5 & 2.1 \\ \hline HH \rightarrow $b\bar{b}\gamma\gamma$ & 2.1 & 2.0 \\ \hline $Combined$ & 3.5 & 3.0 \\ \hline \end{tabular}$
- \blacktriangleright Statistical significance of SM HH w.r.t the background-only hypothesis:

▶ The relative uncertainty on the signal strength is 40% (31%) with (without) systematic uncertainties.

HH prospects vs κ_{λ} :

- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 1$;
- Constraints on κ_{λ} from a likelihood ratio test on an Asimov dataset with background + *HH* with $\kappa_{\lambda} = 0$;
- Significance vs κ_{λ} .

More details in ATL-PHYS-PUB-2018-053 $\,$

CMS HH prospects at HL-LHC

In contrast with ATLAS, all *HH* prospect studies use MC simulations of the upgraded CMS detector with DELPHES at 14 TeV, with 200 pile-up events [CMS-PAS-FTR-18-019]:

- ▶ $HH \rightarrow bbbb$: two $H \rightarrow bb$ candidates, mass-dependent selections, either resolved or boosted topologies with a BDT or m_{JJ} as final discriminant. Challenges lie in jet p_T thresholds and multi-jet background estimate.
- ▶ $HH \rightarrow bb\gamma\gamma$: one BDT against ttH, one BDT against other backgrounds used together with $\tilde{M}_X = m_{\gamma\gamma jj} (m_{\gamma\gamma} m_H) (m_{jj} m_H)$ to define six event categories, fit of the $m_{\gamma\gamma}$ and m_{jj} distributions.
- ▶ $HH \rightarrow bb\tau\tau$: three channels $(\tau_e \tau_h, \tau_\mu \tau_h, \tau_h \tau_h)$ each using a DNN output as final discriminant and later combined.
- ▶ $HH \rightarrow bbVV$: three di-lepton channels, using the shape of a NN to discriminate HH pairs from $t\bar{t}$ and Z/γ^* +jets as final discriminant.
- ▶ $HH \rightarrow bbZZ$: new decay channel, 4-lepton final state \Rightarrow rare but very clean signature! The main backgrounds are $t\bar{t}$ and Z/γ^* +jets via fake/non-prompt leptons (difficult to estimate).

CMS HH prospects at HL-LHC

Statistical combination:

Extrapolation of the CMS Run-2 results \Rightarrow significance of 1.8σ with stat. only uncertainties.

Channal	Signifi	cance	95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$		
Charmer	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	
bbbb	0.95	1.2	2.1	1.6	
bbττ	1.4	1.6	1.4	1.3	
$bbWW(\ell \nu \ell \nu)$	0.56	0.59	3.5	3.3	
$bb\gamma\gamma$	1.8	1.8	1.1	1.1	
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5	
Combination	2.6	2.8	0.77	0.71	

Combination of ATLAS+CMS HH prospects with no correlations between the different channels, and normalisation to 6/ab for $HH \rightarrow bbVV \rightarrow bb\ell\ell\nu\nu$ and $HH \rightarrow bbZZ \rightarrow bb\ell\ell\ell\ell$: see https://arxiv.org/abs/1902.00134

• Combined significance ≥ 4 ;

A. Ferrari (UU)

Minimum negative-log-likelihoods per experiment and channel → the second minimum (degeneracy in event yields) is removed by a low-m_{HH} category in CMS HH → bbγγ.

	Statistic	al-only	Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Comb	ined	Combined		
	4.5	5		4.0	

Combination of ATLAS+CMS HH prospects with no correlations between the different channels, and normalisation to 6/ab for $HH \rightarrow bbVV \rightarrow bb\ell\ell\nu\nu$ and $HH \rightarrow bbZZ \rightarrow bb\ell\ell\ell\ell$: see https://arxiv.org/abs/1902.00134

• Combined significance ≥ 4 ;

- Minimum negative-log-likelihoods per experiment and channel → the second minimum (degeneracy in event yields) is removed by a low-m_{HH} category in CMS HH → bbγγ.
- The 68% confidence interval for κ_{λ} is [0.52;1.5] with systematic uncertainties.

• Exclude second minimum at 99.4% CL.

	Statistic	al-only	Statistical + Systematic		
	ATLAS	CMS	ATLAS	CMS	
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95	
$HH \rightarrow b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4	
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8	
$HH \rightarrow b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH \rightarrow b\bar{b}ZZ(4l)$	-	0.37	-	0.37	
combined	3.5	2.8	3.0	2.6	
	Comb	ined	Combined		
	4.5	5	4.0		

43 / 51

HH prospects beyond HL-LHC... in one and only one slide

Several of the future colliders on the market will establish the existence of the Higgs self-coupling beyond 5σ and improve the precision on κ_{λ} (5-10% for CLIC3000 and FCC-hh). Low(er)-energy e^+e^- colliders (below 500 GeV) can only rely on single-H measurements within EFTs to probe κ_{λ} .

From arxiv:1905.03764

UU-HEP seminar, 07/11/2019

44 / 51

HH prospects prior to HL-LHC?

Talk by E. Vryonidou in the LHCHXSWG-HH meeting of June 17 here.

- ▶ **SM EFT:** no light new physics, Higgs SU(2) doublet, addition of dimension-6 operators.
- ► At leading order, five operators affect Higgs boson pair production, but four of them get constraints from other processes.

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^\dagger \phi\right) (\bar{Q}t) \, \bar{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^\dagger \phi\right) G^A_{\mu\nu} G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \bar{\phi} G^A_{\mu\nu} \\ O_6 &= -\lambda (\phi^\dagger \phi)^3 \\ O_H &= \frac{1}{2} (\partial_\mu (\phi^\dagger \phi))^2 \end{split}$$

Currently, the Higgs boson self-coupling κ_{λ} can still be constrained by ignoring the other EFT couplings.

A. Ferrari (UU)

HH prospects prior to HL-LHC?

Talk by E. Vryonidou in the LHCHXSWG-HH meeting of June 17 here.

- ▶ **SM EFT:** no light new physics, Higgs SU(2) doublet, addition of dimension-6 operators.
- ► At leading order, five operators affect Higgs boson pair production, but four of them get constraints from other processes.

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \bar{\phi}, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger}\phi\right) G^A_{\mu\nu} G^{A\mu\nu}, \\ O_{tG} &= y_t g_s (\bar{Q}\sigma^{\mu\nu}T^A t) \bar{\phi} G^A_{\mu\nu} \\ O_6 &= -\lambda (\phi^{\dagger}\phi)^3 \end{split}$$

In the (close?) future, a global fit with information from differential distributions will be needed. Strategy?

 $O_H = \frac{1}{2} (\partial_\mu (\phi^{\dagger} \phi^{\circ \circ \circ} EFT \text{ couplings were varied one by one here.})$

A simultaneous fit may change the picture!

A. Ferrari (UU)

Summary

- ▶ ATLAS and CMS have recently published many *HH* search results with a partial Run-2 dataset at 13 TeV:
 - ► ATLAS: best 95% CL upper limit by ATLAS at 6.9 times the SM prediction + κ_λ constrained between -5 and +12 at 95% CL;
 - ▶ ATLAS: first single- and double-Higgs-boson combination;
 - ▶ CMS: 95% CL limits set in various EFT-inspired scenarios (shape benchmarks).
- ▶ Very new results in ggF $HH \rightarrow bb\ell\ell\nu\nu$ and VBF $HH \rightarrow bbbb$ using the full Run-2 dataset!
- ▶ Prospect studies: the HL-HLC should exclude the absence of Higgs self-coupling at more than 95% CL and reach a 50% precision on κ_{λ} .
- ▶ Until then, *HH* searches in ATLAS and CMS should focus more and more on interpretations within EFTs (including results from single-*H* measurements).

HH is one of the most exciting (and challenging) field to work with in high-energy physics... now and for many years to come!

Back-up slides

Resonant HH searches

ATLAS - resonant HH - combination

- **>** Spin-0 heavy scalar: all final states, NLO signal model except in *bbbb* and $bb\tau\tau$.
- ▶ Spin-2 KK graviton: only *bbbb*, $bb\tau\tau$ and bbWW, LO signal model, here with $k/\overline{M}_{\rm Pl} = 1 \Rightarrow 95\%$ exclusion for 310–1380 GeV.

https://arxiv.org/abs/1906.02025

ATLAS - resonant HH - combination

- Spin-0 heavy scalar: all final states, NLO signal model except in bbbb and $bb\tau\tau$.
- ▶ Spin-0 interpretations: exclusion limits in the EWK-singlet model (left) and hMSSM (right), using $bbbb+bb\gamma\gamma+bb\tau\tau$.

Exclusion limits are shown only when the resonance width remains smaller than the experimental resolution.

https://arxiv.org/abs/1906.02025

CMS - resonant HH - combination

▶ CP-even particle of spin-0 (radion) or spin-2 (graviton) with a width much smaller than the detector resolution for the whole mass range.

Phys. Rev. Lett. 122 (2019) 121803