

Cold and hot electron sources for the generation of coherent soft and hard X-rays by Compton scattering

Workshop on Science Opportunities with Table-Top Coherent X-Ray Sources, Uppsala, Sweden

Jim Franssen, Tim de Raadt, Daniel Nijhof, Brian Schaap, Xavier Stragier, Tom Lucas, Linda Stoel, Peter Mutsaers, Wiebe Toonen, Ali Rajabi, Marco van der Sluis, Eddy Rietman, Harry van Doorn, Frans van Setten, Jom Luiten

Department of Applied Physics

TU/e

Smart*Light (*hard* X-rays) and ColdLight (*soft* X-rays)

TU/e

X-ray generation by Inverse Compton Scattering

$$l_{x} = \frac{l_{0}}{4g^{2}}(1 + g^{2}q^{2})$$

- X-rays emitted in narrow cone, half angle γ^{-1}
- 1% energy spread if $\theta < 0.1 \gamma^{-1}$

X-ray generation by Inverse Compton Scattering

Laser wavelength $I_0 = 500 \text{ nm}$

Electron energy	Lorentz factor	X-ray wavelength	X-ray energy	Half cone angle 1% energy spread
5 MeV	11	10 Å	1.2 keV	9.0 mrad
20 MeV	40	0.78 Å	16 keV	2.5 mrad
50 MeV	99	0.13 Å	95 keV	1.0 mrad

$$l_{x} = \frac{l_{0}}{4g^{2}} (1 + g^{2}q^{2})$$

- X-rays emitted in narrow cone, half angle γ^{-1}
- 1% energy spread if $\theta < 0.1 \gamma^{-1}$

X-ray generation by Inverse Compton Scattering

X-ray photon number per pulse:

$$N_{x} = \frac{S_{T}N_{0}N_{e}}{2\rho(S_{e}^{2} + S_{0}^{2})}$$

1030 nm, 200 mJ laser:

laser spot size:

$$\left. \begin{array}{c} N_0 \gg 10^{18} \\ S_0^{3} 5 / m \end{array} \right\} \Longrightarrow N_x \le N_e \sim 10^8 - 10^9 \\ \le 1 \text{ X-ray photon per electron} \right\}$$

on ay photon per electi

ICS X-ray brilliance

X-ray photon flu :

$$F_{x} = \frac{S_{T}N_{0}N_{e}f_{rep}}{2\rho(S_{e}^{2} + S_{0})^{2}}$$

1030 nm, 200 mJ,1 kHz 100-bunch burst mode

$$f_{rep} = 10^5 \bowtie F_x \sim 10^{13} - 10^{14} \text{ ph/s}$$

TU/e

ICS X-ray brilliance

TU/e

TU/e

TU/e

ICS sources: Lyncean

first commercial ICS source

absorption image

phase-contrast image

TU/e

Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays

15 Uppsala Oct 2019

TU/e

Smart*Light: a LINAC-based ICS source

Smart*Light: a LINAC-based ICS source: why?

- Availability X-band accelerator technology (CERN)
- Lower emittance beams → higher X-ray coherence
- Easier alignment, *fast change of X-ray energy*
- Less radiation
- No bunker required
- Will fit into sea container
- Proven technology, reliability & robustness
- Modular approach: Swap Guns & Add LINACs
- Upscaling of Photon Flux & X-ray Energy

dump

Available electron beam line components

Smart*Light: a LINAC-based ICS source

First section being manufactured (50 cells now...)

Detailed design calculations with CLIC team CERN

(Possible) Laser System

Trumpf Dira 200-1

robust, reliable, turn-key industrial laser

- Commercially available, compact, high-power, sub-picosecond, 1030 nm, 200 mJ, @ 1 kHz
- With 2nd harmonic module: 515 nm, 100 mJ @ 1 kHz
- 100-bunch burst mode operation using Fabry-Pérot cavity?

Gun upgrade for 100-bunch burst mode

laB₆ source

Point of injection

• 1 mm LaB₆ crystal @ 1760 K

- 10 MV/m cathode field strength
- 100 mA continuous current
 - > 70 nm rad thermal emittance

Gun upgrade for 100-bunch burst mode

Higher harmonic chopping (and compression...)

Gun upgrade for 100-bunch burst mode

Upscaling to harder X-ray energies

Smart*Light estimated performance

Smart*Light phase 1 in 2020

ICS calculations

31 MeV electron beam, 515 nm laser

Smart*Light estimated performance

Smart*Light summary

- Smart*Light: Inverse Compton Scattering Source for tunable, monochromatic hard X-ray beams in a compact setup
- Required accelerator and pulsed laser technology available
- Achievable hard X-ray brilliance several orders of magnitude higher than current lab sources
- Achievable hard X-ray brilliance at high energies comparable to synchrotron bending magnet radiation (DUBBLE @ ESRF)
- Construction started; first light expected in 2020, full performance in 2022.

EUV wavelength

$$I_{X} = I_{0} \frac{1 - b \cos q_{X}}{1 + b \cos q_{0}}$$

$$b=\frac{v}{c}, \ g=\frac{1}{\sqrt{1-b^2}}$$

EUV wavelength

$$/_{X} = /_{0} \frac{1 - b \cos q_{X}}{1 + b \cos q_{0}}$$

$$/_{0} = 1030 \text{ nm}$$

$$U = 1.75 \text{ MeV} \Rightarrow /_{X} = 13.5 \text{ nm}$$

TU/e

- narrowband, easily tunable wavelength
- clean, highly directional

- narrowband, easily tunable wavelength
- clean, highly directional

BUT:

- limited *photon yield* due to small Thomson cross section
- limited *spatial coherence* due to emittance electron beam

Spatial coherence: diffraction limited ICS

 $e_n = gb \frac{I_X}{4\rho} \triangleright I_X = 4\rho \frac{e_n}{gb}$

emittance condition

Inverse Compton Scattering

$$I_{X} = I_{0} \frac{1-b}{1+b}$$

Spatial coherence: diffraction limited ICS

Ultracold electron source allows generation of **diffraction limited EUV beams** by Inverse Compton Scattering

Ultracold atoms

Magneto-Optical Trap (MOT)

N \leq 10¹⁰ Rb atoms R = 1 mm, n \leq 10¹⁸ m⁻³ T \approx 100 µK

Ultracold plasma

Killian et al., PRL 83, 4776 (1999)

Ultracold charged particle beams

42 Uppsala Oct 2019

43 Uppsala Oct 2019

ΓU/e

- grating MOT based
- diode laser, fiber optics based
- compact, turn-key operation

Franssen et al., PR-AB 22, 023401 (2019), editors' suggestion

Laser cooling & magneto-optical trapping of atoms

Laser cooling & magneto-optical trapping of atoms

Normalized emittance & source temperature

48 Uppsala Oct 2019

Uppsala Oct 2019

e

in self-compression point

in self-compression point

in self-compression point

in self-compression point

electron beam on detector

laser off laser on

t = 0 pinhole 'plasma' measurement

in self-compression point

pulse length < 4 ps

t = 0 pinhole 'plasma' measurement

- $T_e \approx 10$ K, $\varepsilon_n \approx 1$ nm rad, 10 keV
- ~10³ electrons/bunch @ 1 kHz
- < 4 ps bunch length
- grating MOT based
- diode laser, fiber optics based
- compact, turn-key operation

Franssen et al., PR-AB 22, 023401 (2019), editors' suggestion

- T_e≈10 K, ε_n≈1 nm rad, 10 keV
- ~10³ electrons/bunch @ 1 kHz
- < 4 ps bunch length
- Soon: RF acceleration to \geq 55 keV
- More charge

- $T_e \approx 10$ K, $\varepsilon_n \approx 1$ nm rad, 10 keV
- ~10³ electrons/bunch @ 1 kHz
- < 4 ps bunch length
- Soon: RF acceleration to ≥ 55 keV
- More charge

Spatial coherence: diffraction limited ICS

Ultracold electron source allows generation of **diffraction limited EUV beams** by Inverse Compton Scattering

Micro-bunched electron beam: excitation

Micro-bunched electron beam: excitation

Micro-bunched electron beam: excitation

Micro-bunched electron beam: ionization

Micro-bunched electron beam: acceleration

preliminary GPT simulations

- realistic fields
- T_e = 10 K
- small bunch
- no space charge

micro-bunching at EUV wavelengths → coherent amplification of ICS

micro bunching at EUV wavelengths → coherent amplification of ICS

 $F_{X} = f(1+N_{e})N_{e}N_{0}\frac{S_{T}}{2\rho w_{0}^{2}}$

spontaneous radiation I $\propto N_e$

micro bunching at EUV wavelengths → coherent amplification of ICS

 $F_{X} \mu N_{e}^{2}$

randomly distributed micro-bunching f = 1 k $E_p = 20$ $f_0 = 10$ $W_0 = 10$ $W_0 = 10$ $W_0 = 10$ Q = 0.1

$$f = 1 \text{ kHz},$$

$$E_p = 200 \text{ mJ}$$

$$/_0 = 1030 \text{ nm}$$

$$w_0 = 10 \text{ mm}$$

$$Q = 0.1 \text{ pC}$$

$$F_X = 4 \times 10^{13} \text{ photons/s}$$

$$E_x = 0.6 \text{ µJ/pulse}$$

$$P = 0.6 \text{ mW}$$

micro bunching at EUV wavelengths → coherent amplification of ICS

 $F_{X} \mu N_{e}^{2}$

randomly distributed micro-bunching icro-bunchingspontaneous radiation $I \propto N_e$ icro-bunching

$$f = 1 \text{ kHz},$$

$$E_p = 200 \text{ mJ}$$

$$/_0 = 1030 \text{ nm}$$

$$W_0 = 10 \text{ //}\text{m}$$

$$Q = 0.1 \text{ pC}$$

$$F_X = 4 \times 10^{13} \text{ photons/s}$$

$$E_x = 0.6 \text{ µJ/pulse} \text{ }$$

$$P = 0.6 \text{ mW} \text{ }$$

***** too good to be true

72 Uppsala Oct 2019
ColdLight: from laser-cooled atoms to coherent soft X-rays

Franssen et al., arXiv:1905.04031 (2019)

ColdLight summary

- ColdLight: Laser-cooled electron source for ICS soft X-ray generation
- 10 K (1 meV) electron source temperature; < 4 ps pulse length
- RF acceleration & bunch compression & higher bunch charge soon
- Full spatial and temporal soft X-ray coherence; coherent amplification...?

High-brilliance X-ray sources

Acknowledgments

ColdLight team

Smart*Light team

