

Drafting the Science Case for Ultrafast Laser-based experiments with EUV Soft X-Ray Photons

Fulvio Parmigiani

University of Trieste Elettra Sincrotrone Trieste

THE EARLY TIMES

Proceedings of the 2003 Particle Accelerator Conference

A RECIRCULATING LINAC-BASED FACILITY FOR ULTRAFAST X-RAY SCIENCE*

J. N. Corlett, W. A. Barletta, S. DeSantis, L. Doolittle, W. M. Fawley, M.A. Green, P. Heimann, S. Leone, S. Lidia, D. Li, A. Ratti, K. Robinson, R. Schoenlein, J. Staples, W. Wan, R. Wells, A.Wolski, and A. Zholents, LBNL, Berkeley, California, USA; F. Parmigiani, UCSC, Brecia, Italy; M. Placidi, W. Pirkl, Geneva, Switzerland;
R. A. Rimmer, Thomas Jefferson National Accelerator Facility, Virginia, U.S.A., S. Wang, Indiana University, U.S.A.

short-period insertion devices

LCLS II

LCLS-II

Figure 49. Time and length scales of spontaneous dynamics associate with various materials and chemical processes. X-ray photon correlation spectroscopy operates in a key area not accessible by other techniques. LCLS-II will open up

Figure 52: Left shows skyrmion spin texture.³⁹ Skyrmions form a hexagonal lattice in a plane that is perpendicular to the applied field direction. Middle: Resonant soft X-ray scattering from skyrmions in Cu_2OSeO_3 .⁴⁰ Six distinct scattering peaks reflect the 3Q nature of the ordering. Right: Phase diagram of Cu_2OSeO_3 with the skyrmion phase indicated in red.⁴⁰

THE PHOTON PULSE ISSUE

LASER FROM LASER: EXTERNAL COHERENT SEEDING

FEL LIGHT HANBURY BROWN AND TWISS (HBT) INTERFEROMETRY

2018 FEL Hanbury Brown and Twiss (HBT) interferometry

ARTICLE

DOI: 10.1038/s41467-018-06743-8 OPEN

Seeded X-ray free-electron laser generating radiation with laser statistical properties

Oleg Yu. Gorobtsov^{1,9}, Giuseppe Mercurio^{2,10}, Flavio Capotondi³, Petr Skopintsev^{1,11}, Sergey Lazarev ^{1,4}, Ivan A. Zaluzhnyy ^{1,5,12}, Miltcho B. Danailov³, Martina Dell'Angela⁶, Michele Manfredda³, Emanuele Pedersoli ³, Luca Giannessi^{3,7}, Maya Kiskinova ³, Kevin C. Prince ^{3,8} Wilfried Wurth^{1,2} &

PRINCIPAL FEL FACILITIES

Source	Where	1 st Light	Туре	Notes
FLASH		2005	SC	UV FEL - 10 Hz / bunch trains
FLASH2		2013	00	Seeded UV FEL
LCLS		2009	NC	HXR FEL - 120 Hz
LCLS-II		2018		
FERMI		2011	NC	UV FEL - 50 Hz
FEL2		2013		Seeded UV FEL
SACLA		2011	NC	HXR FEL - 60 Hz
PALFEL		2015	NC	HXR FEL - 120 Hz
EXFEL		2016	SC	HXR FEL - 10 Hz / bunch trains
SwissFEL	H	2017	NC	HXR FEL - 100 Hz
LCLS II		2023	CW SC	SXR FEL - 1,000,000 Hz (CW)

TABLE-TOP AND SOFT X-RAY FELS

TABLE-TOP AND SOFT X-RAY FELS

A GLANCE TO THE SCIENCE

TABLE-TOP AND SOFT X-RAY FELs SCIENCE

1. Nonlinear & Quantum X-ray Optics

Multi-dimensional X-ray spectroscopy (2-color - fully tunable, synchronized) ! Stimulated X-ray Raman (local valence excitation) Stimulated X-ray emission spectroscopy

2. High-resolution Spectroscopy at the Transform-limit

Time-resolved meV RIXS Time & Spin Resolved ARPES

3. Heterogeneous Systems – Fluctuation Dynamics

Dynamics of mesoscale assembly (>1010 scattering snapshots) Biological macromolecular function & interaction X-ray Pulses on demand for synchronization to droplets.

4. Ultrafast Molecular Reaction Microscope.

5. Cinematic Tomography with chemical selectivity

TABLE-TOP AND SOFT X-RAY FELs SCIENCE

Natural and Artificial Photosynthesis

Fundamental Charge Dynamics

Advanced Combustion Science

TABLE-TOP AND SOFT X-RAY FELs SCIENCE

Quantum Materials

Nanoscale Materials Nucleation

Nanoscale Spin and Magnetization

SOLAR ENERGY CONVERSION STARTS WITH CHROMOPHORES

Zgrablić, Novello, Parmigiani, JACS, 134 (2), 955-961 (2012)

\rightarrow solvent polarity changes branching in the conical intersection

MATERIALS

OPTICAL – PHOTOELECTRONIC - MAGNETO-OPTICAL

TR-2PPE

TR-ARPES

TR-MAGNETO-OPTICS

TR-OPTICAL BROADBAND SPECTROSCOPY

THE TIME RESOLVED OPTICAL SPECTROSCOPY (TROS)

- * True spectroscopy with temporal resolution
- * Disentangle effects by their spectral fingerprint AND timescale
- * Study the effect of a small non-equilibrium distribution

Resolved Optical Spectroscopy at T-ReX:

any combination is currently possible:

<u>Probe</u>: VIS and IR Supercontinuum (400-1100 nm and 500-1700 nm), OPA (1100-2600 nm) <u>Pump</u>: 800 nm, 400 nm, OPA (1100-2600) nm)

THE NORMAL METAL STATE - SUPERCONDUCTING STATE

Unveiling the pairing mechanism in Cuprate High-Tc superconductors

S. Dal Conte, C. Giannetti, F. Cilento et al., Science 335, 1600 (2012)

C. Giannetti, F. Cilento et al., Nature Communications 2, 353 (2011)

Sub-pm ATOMIC DISPLACEMENTS

Ultrafast broadband optical spectroscopy for quantifying subpicometric coherent atomic displacements in WTe₂

Davide Soranzio,¹ Maria Peressi,¹ Robert J. Cava,² Fulvio Parmigiani,^{1,3,4} and Federico Cilento^{4,*}

In press Phy. Rev. Research.2019

QUANTUM OPTICS TR-SPECTROSCOPY

BALANCED HOMODYNE DETECTION

FOLLOW PAPERS BY D. FAUSTI AND CO-WORKERS

Quantum state reconstruction

BALANCED HOMODYNE DETECTION

POLARIZATION

ANGULAR MOMENTUM IN TERMS OF PHOTONS

- Spin angular momentum
 - Circular polarisation
 - $\sigma\hbar$ per photon
- Orbital angular momentum
 - Helical phasefronts
 - $\ell\hbar$ per photon

Intrinsic angular momentum of the photon formally equivalent to the particle spin

Adapted from Miles Padgett

TUNABILITY

M-edge RIXS @ FERMI

A COMMON PROJECT: TR M-edge RIXS @ FERMI

PHYSICAL REVIEW B 99, 115120 (2019)

Direct observation of spin-orbit-induced 3*d* hybridization via resonant inelastic extreme ultraviolet scattering on an edge-sharing cuprate

Marco Malvestuto,^{1,2,*} Antonio Caretta,¹ Barbara Casarin,² Roberta Ciprian,^{1,†} Martina Dell'Angela,³ Simone Laterza,² Yi-De Chuang,⁴ Wilfried Wurth,^{5,6} Alexandre Revcolevschi,⁷ L. Andrew Wray,⁸ and Fulvio Parmigiani^{1,2,9}

A GLANCE TO THE FUTURE

ARPES AND QM

Structures in momentum space

All materials

- Brillouin zones
- Fermi surfaces
- Band dispersion

Related to quantum materiais

• Charge density wave gaps

(π/a)

-2

- Superconducting gaps
- Spin density wave gaps
- Electron-boson coupling
- Heavy fermion hybridization gaps
- Spin momentum locking
- Dirac dispersions
- Surface states

RIXS AND QM

quantum spin liquid material: herbertsmithite 2. (a) A high quality single crystal resulting from growth (b) Crystal structure with Cu^{2+} ions (large and Zn^{2+} ions (small brown spheres) displayed.

• Bulk sensitive

- Element-specific (L-edge, or K-edge)
 - Transition-metals(Fe, Cu, Mn, Ti, Ir etc.)
 - o Oxygen, Arsenic
- Energy resolution (~20 meV)
- Momentum resolution
- Time resolution (20 meV I00 fs)
- Monolayer/interface sensitivity
- Applied fields (magnetic, electric)

Current limitations:

 Photon flux in narrow bandwidth (coherent X-ray source ⇒ laser)

herbertsmithite al resulting from $h Cu^{2+}$ ions (large res) displayed.

COMBINING ARPES/RES-ARPES WITH RIXS

A PARADIGMATIC EXAMPLE: MAGNETIC INTERACTIONS IN QM

MEASURING THE SPIN TEXTURE IN AF-QM

VOLUME 78, NUMBER 6

PHYSICAL REVIEW LETTERS

10 February 1997

Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO

L.H. Tjeng,¹ B. Sinkovic,² N.B. Brookes,³ J.B. Goedkoop,³ R. Hesper,¹ E. Pellegrin,¹ F.M.F. de Groot,¹ S. Altieri,¹ S.L. Hulbert,⁴ E. Shekel,^{2,*} and G.A. Sawatzky¹

In this photoemission work on CuO we make use of the $2p_{3/2}$ (L₃) resonance condition: when the photon energy is near the Cu 2p ($L_{2,3}$) absorption edges, the photoemission consists not only of the direct channel $(3d^9 + h\nu \rightarrow$ $3d^8 + e$) but also, and, in fact, overwhelmingly, of the deexcitation channel in which a photoabsorption process is followed by a nonradiative Auger decay $(2p^63d^9 +$ $h\nu \rightarrow 2p^5 3d^{10} \rightarrow 2p^6 3d^8 + e$). In principle, to observe spin signal one needs only the use of a spin detector and circularly polarized light. It is important to realize, however, that circularly polarized light can only be very effective if a strong spin-orbit splitting is present in the atomic subshell under study, because then angular momenta will govern the selection rules [24]. Conse-

MEASURING THE SPIN TEXTURE IN AF-QM

MEASURING THE SPIN TEXTURE IN AF-QM

S. Suga, C. Tusche / Journal of Electron Spectroscopy and Related Phenomena 200 (2015) 119–142

MEASURING THE SPIN TEXTURE IN T.I.

JÜLICH

FORSCHUNGSZENTRUM

Spin textures

Forschungszentrum Jülich, Y.-J. Chen and C. Tusche

SELECTIVE EXCITATIONS

AVAILABLE SPECTROSCOPIC TOOLS

THz-Excitations

Homodyne reconstruction of the quantum state

THZ: GENERATION OF INTENSE PULSES

Hebling et al. J. Opt. Soc. Am. B Vol. 25 No. 7 (2008)

Novelli & al. Scientific Reports 3, Article number: 1227, 2013

ARPES AND QM

Structures in momentum space

All materials

- Brillouin zones
- Fermi surfaces
- Band dispersion

Related to quantum materiais

• Charge density wave gaps

(π/a)

-2

- Superconducting gaps
- Spin density wave gaps
- Electron-boson coupling
- Heavy fermion hybridization gaps
- Spin momentum locking
- Dirac dispersions
- Surface states

PLANTY OF ROOM FOR IMPROVING HHG SOURCES

Space Charge Free Ultrafast Photoelectron Spectroscopy on Solids by a Narrowband Tunable Extreme Ultraviolet Light Source

Parameter	Value
Photon energy (eV)	16.9
Rep. Rate (kHz)	200
$\Delta E_{exp} \ (\mathrm{meV})$	22
Δt_{exp} (fs)	300
$\Delta E_{probe} \ (\mathrm{meV})$	19
Δt_{probe} (fs)	105
Δt_{FT} (fs)	96

Future Scenario

- The way to produce fully coherent EUV soft X-ray radiation is paved.
- Tunability
- Variable polarization
- Full coherence
- High repetition rate Controlling peak vs. average
 Brilliance

The future scenario Coherent X-ray Optics Quantum X-ray optics Stroboscopic phase tomography

An extraordinary effort is – needed to develop a suitable science program