CERN - CO2 primary cooling project for Inner Detector cooling of ATLAS and CMS Experiments

Michele Battistin – on behalf of the Primary CO2 Project team

6/2/2020

High Luminosity LHC Project

CERN project for CO₂ cooling

- New Silicon Inner Detector of the two largest CERN Experiments (ATLAS and CMS) will be installed in 2025: the new detectors will require higher cooling power (hundreds of kW) and lower controlled negative temperature;
- A new concept of two stage transcritical CO₂ refrigeration system is R&D phase at CERN in collaboration with NTNU (Norwegian Institute of Technology – Trondheim);
- First prototype under construction (50 kW; -53°C);
- Four **future** systems to be realised in industry (50 kW; 50 kW; 300 kW; 600 kW @ -53°C): **Invitation to Tender** process in **2020.**

Aim of the project CO2 primary

- A primary CO₂ lubricated loop (yellow lines)
- A secondary CO₂ oil free distribution loop (red lines)

Requirements:

- CO₂ Refrigerant fluid (R₇₄₄).
- Supply liquid CO₂ below -45°C to detectors → Evaporation temperature
 @-53°C in cavern at the CO₂ plants.
- Cooling needs
 - 1. ATLAS **300 kW**
 - 2. CMS **600 kW**
 - Supply of CO₂ in cavern @ ambient temperature to **avoid insulation** of pipes.
- 24/364 Operation
- Reduced Oil carry over in cavern.

Concept and number of systems

Simplified schematic of the first prototype unit of 100 kW cooling capacity.

Technical Solution:

- Two stages CO2 transcritical compression circuit.
- Semi-hermetic reciprocating compressors.
- Modular approach based on :
 - One common equipment slice
 - Compressors slices with cooling capacity between 50 to 75 kW
- On each compressor slice only one compressor by stage (two compressors per slice).

Secure operation and give possibility of hidden maintenance

Detailed P&ID of System-A (under construction)

6 February 2020

Modularity & units

Example of similar system in NTNU

R744 (CO₂) primary prototyping

- All future primary projects have been placed in the same development program.
 - Primary for the DEMO 2PACL plant (System A)
 - 2x 50kW slices
 - · Testing capacity control and swapping philosophy
 - Testing cold operation <-53'C
 - Possible to go sub-triple to compensate pressure drop losses
 - Vertical flow test set-up (System B)
 - · One 50kW slice system
 - Using existing mini thermosiphon pipes (1" & 2") installed in the ATLAS shaft
 - · Plant on surface, dummy load in USA15
 - System B will become primary for SR1 cooling
 - Dummy load initially used for system A commissioning
 - System for CMS surface testing (System C)
 - SR1 equivalent
- The 3 projects acts as prototypes to prepare for a smooth final system integration
- Tests in an existing set-up at NTNU showed the cold temperature feasibility
 - <-50'C R744 systems are being developed for the fishing industry.</p>

R744 refrigeration, a reborn technology

-52.2'C in a quick test

R744 test system in NTNU-Trondheim

We use the term R744 for the primary, which is the refrigerant code for CO2, to distinguish both systems

18

Curtesy: Armin Hafner - NTNU

GENERAL SCHEDULE

Market Survey phase is opening: documents available on March 2020 CERN is looking for **competent companies** in this field.

Thank you for your attention Any Question?

Credits: Anders Andersen, Stefanie Blust, Jerome Daguin, Martin Doubek, Dina Giakoumi, Armin Hafner, **Pierre Hanf**, Pierre Mondon, Angel Pardinas, Paolo Petagna, Hans Postema, **Bart Verlaat**.

Michele Battistin CERN – EN/CV/PJ & CFD CH-1211 Geneva 23 Tel +41.22.767.80.87 Mob +41.75.411.42.51 Michele.Battistin@cern.ch

6 February 2020