

GEORG-AUGUST-UNIVERSITÄT Göttingen

Searching for pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state with the ATLAS detector

Petar Bokan Uppsala University, Georg-August-Universität Göttingen supervisors: Arnaud Ferrari, Stan Lai

Final PhD Seminar – April 23, 2020

Outline...

→ Results, more results, near and far future...

Higgs potential

o Important to measure the shape of the Higgs potential

Introduction

m

$$V(\phi) = -\mu^2 (\Phi^{\dagger} \Phi) + \frac{1}{4} \lambda (\Phi^{\dagger} \Phi)^2$$

Expanding about minimum: $V(\Phi) \rightarrow V\begin{pmatrix} 0\\ v+H \end{pmatrix}$

$$V = V_0 + \lambda v^2 H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4 + \dots$$

 $=V_0+\frac{1}{2}m_H^2H^2+\frac{m_H^2}{2v^2}vH^3+\frac{1}{4}\frac{m_H^2}{2v^2}H^4+\dots$

arXiv:1201.6045

V(b)

Standard Model (SM):

$$v = \frac{\mu}{\sqrt{\lambda}} = 246 \,\mathrm{GeV}$$

hass term
$$HH$$
-production HHH -production

$$\lambda = \frac{m_h^2}{2v^2} \approx 0.13$$

Introduction bb au au analysis BDT HL-LHC Legacy result Conclusion

SM Higgs boson pair production at the LHC

¹ SM Higgs boson pair production (gluon-gluon fusion - ggF):

Introductionbbττ analysisBDTHL-LHCLegacy resultConclusionSM Higgs boson pair production at the LHC

1 SM Higgs boson pair production (gluon-gluon fusion - ggF):

Higgs-fermion Yukawa coupling

Small production cross-section:

 $\sigma_{\rm SM}^{\rm ggF}=31.02~{\rm fb}$ at $\sqrt{s}=13~{\rm TeV}$

o two massive final state particles o destructive interference

Introduction

SM Higgs boson pair production at the LHC

Standard Model Total Production Cross Section Measurements Status: July 2018

• SM HH production $\sim 1000 \times$ lower compared to the single-H production • Current LHC dataset won't be enough to reach the sensitivity

Introduction $bb\tau\tau$ analysisBDTHL-LHCLegacy resultConclusionHiggs boson pair production at the LHC1SM Higgs boson pair production(gluon-gluon fusion - ggF): H_{-1}

Higgs boson self-coupling

Higgs-fermion Yukawa coupling

.00

- Potential non-resonant BSM enhancements (new couplings, modified Yukawa and/or self-couplings)
- 3 Benchmark BSM resonance hypotheses:
 - Randall-Sundrum graviton $G \rightarrow HH$ (spin=2)

•
$$S \rightarrow HH$$
 (spin=0)

00

Introduction $bb\tau\tau$ analysis BDT HL-LHC Legacy result Conclusion

Di-Higgs final states

Di-Higgs decay modes and relative branching fractions:

	bb	WW	ττ	ZZ	γγ
bb	33%	10	.23731/0	CYRM-2	017-002
WW	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

Some of the most sensitive channels:

 $HH \rightarrow b\bar{b}b\bar{b}$: the highest BR, large multijet background

 $HH \rightarrow b\bar{b}\tau^+\tau^-$:

relatively large BR, cleaner final state

 $HH \rightarrow b\bar{b}\gamma\gamma$:

small BR, clean signal extraction thanks to a good $\gamma\gamma$ mass resolution

No golden channel! Important to consider different final states!

Introduction $bb\tau\tau$ analysis BDT HL-LHC Legacy result Conclusion

ATLAS Detector

Introduction $bb\tau\tau$ analysis BDT HL-LHC Legacy result Conclusion Tau leptons

Leptonically decaying au leptons: e/μ + missing energy

Hadronically decaying τ leptons:

narrow jets with low track multiplicity + missing energy

Introduction $bb\tau\tau$ analysis BDT HL-LHC Legacy result Conclusion Tau leptons

Leptonically decaying au leptons: e/μ + missing energy

Hadronically decaying au leptons:

narrow jets with low track multiplicity + missing energy

Typically decaying into 1 or 3 π^{\pm} and some number of π^{0} Machine learning used for identification

Introduction $bb\tau\tau$ analysis BDT HL-LHC Legacy result Conclusion Tau leptons

Leptonically decaying au leptons: e/μ + missing energy

Hadronically decaying au leptons:

narrow jets with low track multiplicity + missing energy

Typically decaying into 1 or 3 π^{\pm} and some number of π^{0} Machine learning used for identification

Quark- and gluon-initiated jets can be misidentified as τ leptons Usually not very well described in simulations Introduction $bb\tau\tau$ analysisBDTHL-LHCLegacy resultConclusion

ATLAS Trigger System

Level-1 - reduced granularity information at full rate HLT - full granularity information at reduced rate

$bb\tau\tau$ final state objects, identification, background estimation, ...

$bar{b} au_{ m lep}$	$\sigma au_{ m had}$	$bar{b} au_{ m had} au_{ m had}$	
$\label{eq:single_single} \begin{array}{ c c } \mbox{Single lepton trigger} \\ p_T^{e/\mu} > 27 \ \mbox{GeV} \end{array}$	Lepton+tau trigger (to improve sensitivity)	Single tau trigger (to improve sensitivity)	Di-tau trigger $p_T^{ au_0, au_1} > 40,30~{ m GeV}$
b H e/µ from τ decay	b	₽- Thad	b H H
$\tau_{\rm had}^{\rm vis}$ $\tau_{\rm had}^{\rm vis} {\rm BR} \approx 46\%$	%	$\mathcal{T}_{\mathrm{had}} \tau_{\mathrm{had}}$	$\tau_{\rm had}^{\rm vis}$

$bar{b} au_{ m lep}$	$_{ m p} au_{ m had}$	$bar{b} au_{ m had} au_{ m had}$	
Single lepton trigger $p_T^{e/\mu} > 27~{\rm GeV}$	Lepton+tau trigger (to improve sensitivity)	Single tau trigger (to improve sensitivity)	Di-tau trigger $p_T^{ au_0, au_1}>40,30~{ m GeV}$

3 Signal Regions:

- Opposite charge of the visible au decay products
- $\circ~2$ b-tagged jets

$b \overline{b} au_{ m lep}$	$_{ m p} au_{ m had}$	$b \overline{b} au_{ m had} au_{ m had}$	
Single lepton trigger $p_T^{e/\mu} > 27~{\rm GeV}$	Lepton+tau trigger (to improve sensitivity)	Single tau trigger (to improve sensitivity)	Di-tau trigger $p_T^{ au_0, au_1}>40,30~{ m GeV}$

3 Signal Regions:

- $\circ~$ Opposite charge of the visible τ decay products
- $\circ~$ 2 $\mathit{b}\text{-tagged}$ jets

Control Regions:

- $\circ~$ 0,1 b-tagged jet
- o Same charge
- o $Z\mu\mu + b\bar{b}$, ...

$tar{t}$ background with fake- $au_{ m had}$

Introduction

Background estimation

 \circ Example: modeling of the *HH*-system invariant mass in 3 signal regions:

Introduction

Background estimation

 $\,\circ\,$ Example: modeling of the $HH\mbox{-system}$ invariant mass in 3 signal regions:

Other backgrounds estimated using Monte Carlo

Simultaneous profile likelihood fit of the BDT score distributions

Limit on
$$\sigma_{HH} / \sigma_{HH}^{SM}$$
:
PRL 121, 191801
$$-1\sigma \quad \text{Expected} \quad +1\sigma \quad \text{Observed} \quad (95\% \text{ CL})$$
10.7
14.8
20.6
12.7

→ Results, more results, near and far future...

ntroduction bb au au analysis BDT HL-LHC Legacy result Co

SM HH production, combined results

- Most recent ATLAS and CMS combinations of di-Higgs searches
- b b b au au proves to be one of the most sensitive channels

Varied Higgs self-coupling

• Potential non-resonant BSM enhancements (ggF):

BDT

using coupling scale-factors: $\kappa_t = g_{t\bar{t}H}/g_{t\bar{t}H}^{SM}$ and $\kappa_\lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}$ to modify the SM Higgs boson pair production

 $A(\kappa_t, \kappa_\lambda) = \kappa_t^2 B + \kappa_t \kappa_\lambda T$

19/25

→ Results, more results, near and far future...

- o The HL-LHC will allow to do measurements which are currently statistically limited
- $\circ~{\rm SM}~HH$ production important physics case for building the HL-LHC
- $\circ~$ The sensitivity to $HH \rightarrow bb \tau \tau$ estimated by extrapolating the current result
- Taking into account different scenarios for systematic uncertainties, triggers, *b*-tagging efficiency, etc.

$$\int Ldt = 36.1 \rightarrow 3000 \text{ fb}^{-1}$$
$$\sqrt{s} = 13 \rightarrow 14 \text{ TeV}$$

ATL-PHYS-PUB-2018-053

*Baseline scenario: MC stat. unc. neglected, theory unc. reduced, assumed detector performance taken into account $$_{\rm 21/25}$$

Results of the extrapolation

*Baseline scenario: MC stat. unc. neglected, theory unc. reduced, assumed detector performance taken into account $^{21/25}$

Introduction

HL-LHC

Limits on the cross-section as a function of κ_{λ}

• Allowed 95% CL κ_{λ} interval, Asimov dataset: $\sigma_{HH} = 0$ no syst. unc.: $\kappa_{\lambda} \in [1.4, 6.3]$, baseline scenario: $\kappa_{\lambda} \in [1.0, 7.0]$

ATL-PHYS-PUB-2018-053

κλ

-> Results, more results, **near** and far **future**...

- $\circ~{\rm More}$ data: $36.1~{\rm fb}^{-1} \rightarrow 139~{\rm fb}^{-1}$
- o Updated trigger and object reconstruction (new triggers, τ_{had} reconstruction, PFlow jets, etc.)
- o τ_{had} -identification: BDT \rightarrow RNN Recurrent neural network, ATL-PHYS-PUB-2019-033
- o b-jet identification: MV2c10→DL1r
 Deep Learning Heavy Flavour Tagger, FTAG-2019-001
- o Re-deriving and improving data-driven background modelling
- o Exploring new multivariate techniques

Neural Networks

• How much we can improve?

Conclusion & Outlook

- $\circ~HH \rightarrow bb\tau\tau$ is one of the most sensitive channels
- $\,\circ\,$ Constraints on the SM HH cross-section and κ_{λ} set using $36.1~{\rm fb}^{-1}$ of data
- o Analysis using the full Run 2 dataset ongoing. Promising HL-LHC prospects

CERN Yellow Report, expected constraints on κ_{λ}

HL-LHC ATLAS+CMS combination:

arXiv:1902.00134 [hep-ph]

Conclusion

HL-LHC

BDT HL-LHC Legacy result Conclusion Conclusion & Outlook

- $\circ~HH \rightarrow bb\tau\tau$ is one of the most sensitive channels
- $\,\circ\,$ Constraints on the SM HH cross-section and κ_{λ} set using $36.1~{\rm fb}^{-1}$ of data
- o Analysis using the full Run 2 dataset ongoing. Promising HL-LHC prospects

CERN Yellow Report, expected constraints on κ_λ

HL-LHC ATLAS+CMS combination:

backup slides

Dominant trig category Trigger-dependent event preselection

$ au_{ m lep} au$	had	$ au_{ m had} au_{ m had}$	
Lepton+tau trigger	Single lepton trig	Single tau trigger	Di-tau trigger
LTT	SLT	STT	DTT
$1~{ m e}/\mu$ ai	nd 1 $ au$	2 τ	S
18 GeV $< p_T^e <$ SLT threshold	$p_T^{e/\mu} > 25-27~{ m GeV}$	$p_T^{\mathrm{lead}\tau} > 100 - 180 \; \mathrm{GeV}$	$p_T^{\mathrm{lead}\tau}$ > 40 GeV
15 GeV $< p_T^\mu <$ SLT threshold	$p_T^{\tau}>20{\rm GeV}$	$p_T^{\mathrm{subl} au} > 20 \; \mathrm{GeV}$	$p_T^{\mathrm{subl} au} > 30 \; \mathrm{GeV}$
$p_T^{ au} > 30~{\rm GeV}$			
$p_T > 80, 20 \; {\rm GeV}$			
2017 and 2018:	≥ 2 cen	tral jets	2016: $p_T > 80, 20 \text{ GeV}$
$p_{T} > 45, 20, p_{T}^{ au} > 40 \; { m GeV}$	$p_T>45,20{\rm GeV}$	$p_{T} > 45, 20 \; {\rm GeV}$	2017 and 2018:
$\begin{array}{l} {\rm OR} \; p_T > 80, 20 \; {\rm GeV} \\ {\rm with} \; \Delta R_{\tau \tau} < 2.5 \end{array}$			$p_T > 80, 20 \; {\rm GeV}$ with $\Delta R_{\tau\tau} < 2.5$
${\rm OR}\;p_T>45,45\;{\rm GeV}$			${\rm OR}\;p_T>45,45\;{\rm GeV}$

$m_{ au au}^{ m MMC} > 60~{ m GeV}$

o LTT and DTT studies for 2017 and 2018 ongoing, the decisions are not final

Multijet (fake- $au_{had} au_{had}$) estimate

Assumption: jet $\rightarrow \tau_{had}$ misidentification probability the same in same-sign-charge (SS) and opposite-sign-charge (OS) regions

$$FF = N_{\rm ID}^{\rm SS} / N_{\rm Anti-ID}^{\rm SS}$$
$$(N = data - MC)$$

o Anti-ID: at least one τ fails $\tau\text{-ID}$ o Binned in #track, trigger, p_T^τ

$$N_{\rm multijet}^{\rm SR} = FF \times N_{\rm Anti-ID}^{\rm OS}$$

 Modelling checked in validation regions

Boosted Decision Tree

Variable	$\tau_{\ell} \tau_{had}$ channel (SLT resonant)	$\tau_{\ell} \tau_{had}$ channel (SLT non-resonant & LTT)	$ au_{ m had} au_{ m had}$ channel
m _{hh}	✓	\checkmark	√
$m_{\tau\tau}^{MMC}$	\checkmark	\checkmark	1
m _{bb}	\checkmark	\checkmark	√
$\Delta R(\tau, \tau)$	\checkmark	\checkmark	1
$\Delta R(b, b)$	\checkmark	\checkmark	1
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark		
$E_{\rm T}^{\rm miss}\phi$ Centrality	\checkmark		√
m_{T}^{W}	\checkmark	\checkmark	
$\Delta \dot{\phi}(\mathbf{h},\mathbf{h})$	\checkmark		
$\Delta p_{\rm T}(\ell, \tau)$	√		
Sub-leading b -jet p_T	√		

Table 1: Variables used as inputs to the BDTs for the different channels and signal models.

- o Separate BDTs trained for each signal (and mass) hypothesis
- In resonant case the BDT is trained on the hypothesis + two neighboring mass points.
- $\circ\,$ Dedicated BDT used for κ_{λ} scan.

CERN-OPEN-2012-016

Profile likelihood fit

Using probability density function of the form:

$\mathcal{P}(n_c, a_p \mid \phi_p, \alpha_p, \gamma_b) =$

$\prod_{c \in \text{channels } b \in \text{bins}} \frac{\text{Pois}(n_{cl})}{n_{cl}}$

 $\frac{\operatorname{Pois}(n_{cb}|\mu\nu_{cb}^{\operatorname{sig}}+\nu_{cb}^{\operatorname{bkg}})}{G(L_0|\lambda,\Delta_L)} \cdot \prod_{p \in \mathbb{S}+\Gamma} f_p(a_p|\alpha_p)$

- $b \in \mathsf{bins}$
- $c \in \mathsf{channels}$
- $s \in \mathsf{samples}$
- $p \in \mathsf{parameters}$
- ϕ_p : unconstrained normalization
- $\mathbb{S} = \{\alpha_p\}$: external constraints
- $\Gamma = \{\gamma_{csb}\}$: bin-by-bin uncertainties

 $\begin{array}{l} \mu \text{: Parameter Of Interest} \\ \mu = 0 \leftarrow \text{background-only} \\ \text{hypothesis} \end{array}$

Poisson probability of obtaining n_{cb} events when ν_{cb} are expected Gaussian constraint term with luminosity parameter λ and nominal value L_0

Constraint term describing an auxiliary measurement a_p that constraints the nuisance parameter α_p

If one imagines the data as being fixed, then this equation depends on μ and is called the likelihood function $L(\mu)$

CERN-OPEN-2012-016

Upper Limits

Using maximum likelihood ratio:

$$\begin{split} \lambda(\mu) &= \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} & \stackrel{\leftarrow \text{maximizes } L}{\text{for specified } \mu} \\ \leftarrow \text{maximizes } L \end{split} \\ \text{Test statistic used for upper limits:} \\ q_{\mu} &= \begin{cases} -2 \ln \lambda(\mu), & \text{if } \hat{\mu} \leq \mu \\ 0, & \text{if } \hat{\mu} > \mu \end{cases} \\ \text{From observed } q_{\mu} \text{ find } p\text{-value:} \\ p_{\mu} &= \int_{q_{\mu, \text{obs}}}^{\infty} f(q_{\mu} \mid \mu) dq_{\mu} \end{split}$$

95% CL upper limit on μ is highest value for which *p*-value is not less than 0.05

(1)

SM HH production, combined results

- Most recent ATLAS and CMS combinations of di-Higgs searches
- $\circ \ bb au au$ proves to be one of the most sensitive channels

Varied trilinear Higgs self-coupling

HH production modified

(using scale factors: $\kappa_t = g_{t\bar{t}H}/g_{t\bar{t}H}^{SM}$ and $\kappa_\lambda = \lambda_{HHH}/\lambda_{HHH}^{SM}$)

$$A(\kappa_t, \kappa_\lambda) = \kappa_t^2 B + \kappa_t \kappa_\lambda T$$

 $A(1,0) = B \qquad A(1,1) = B + T \qquad A(1,2) = B + 2T$

Express $|B|^2$, $|T|^2$ and $(BT^* + TB^*)$ in terms of $|A(1,0)|^2$, $|A(1,1)|^2$ and $|A(1,2)|^2$, which leads to:

 $|A(\kappa_t, \kappa_\lambda)|^2 = a(\kappa_t, \kappa_\lambda)|A(1,0)|^2 + b(\kappa_t, \kappa_\lambda)|A(1,1)|^2 + c(\kappa_t, \kappa_\lambda)|A(1,2)|^2$

Any $(\kappa_t, \kappa_\lambda)$ combination at LO can be obtained from a **linear combination** of some 3 $(\kappa_t \neq 0, \kappa_\lambda)$ samples!

- Showing generator level m_{HH} for: $\kappa_{\lambda} = \{0, 1, 2, 20\}$ (other parameters fixed to the SM)
- Different bases tested for linear combination (e.g. $\kappa_{\lambda} = \{0, 1, 2\}$ vs $\kappa_{\lambda} = \{0, 1, 20\}$)

0

400 500 600

Truth m_{HH} [GeV]

generated lin. comb.

o Remaining sample used for validation (very good closure at generator level)

300 400 500 600 700 800 m_{HH} [GeV] · HH) [fb / 20 GeV] ATLAS Simulation Preliminary ATLAS Simulation Preliminary ATL-PHYS-PUB-2019-00 Generated sample k₁=2 Generated sample k₁=20 Linear combination κ₁={0,1,20} Linear combination κ_i={0,1,2} Statistical uncertainty Statistical uncertainty κ₁=2 $\kappa_1 = 20$ s(pp→ F 10 generated lin. comb.

300

500 600 700

Truth m_{HH} [GeV]

400

Linear combination

Trilinear Higgs self-coupling scan strategy $m_{HH}^{\kappa_{\lambda}=x}$, for $x = \{-20, -19, ..., 20\}$, at generator level, at LO obtained using the linear combination : j 0.8 ATLAS Simulation Work In Progress √s= 13 TeV ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress ATLAS Simulation Work In Progress $-\kappa_{\lambda}=2$ $-\kappa_{\lambda}=5$ $-\kappa_{\lambda} = 10$ $-\kappa_{\lambda} = -5$ 0.6 0.5 0.15 0.8 0.4F 0.6 0.3F 0.1 0.2F 0.4 0.05 0.1 300 400 500 600 700 800 300 400 500 600 700 200 300 400 500 600 200 300 400 500 600 m_{HH} [GeV] m_{HH} [GeV] m_{HH} [GeV] m_{HH} [GeV]

Differences compared to the SM HH search

- $\,\circ\,$ Acceptance changes significantly as a function of κ_λ
- A dedicated BDT, trained on $\kappa_{\lambda} = 20$ signal is used since it performs good for all κ_{λ} points.

variations of the m_{HH} spectrum with κ_{λ} :

Extrapolation scenarios

1 Current systematic uncertainties

2 Current systematic uncertainties, MC stat. uncertainty neglected Fractional impact on $\Delta \mu$ goes from 18% (Run 2) to 84% (HL-LHC)

3 Baseline

- o $Z{+}{\rm heavy-flavor}$ and $t\bar{t}$ normalization uncertainties scaled down with lumi
- o Significant reduction assumed for the VH and $t\bar{t}H$ uncertainties
- o MC statistical uncertainty neglected
- Statistical unc. on the data-driven backgrounds adjusted to follow Poisson statistics
- o Cross-section uncertainties reduced

4 No systematic uncertainties

Results of the extrapolation

o 3 signal regions: $\tau_{\text{lep}}\tau_{\text{had}}$ SLT, $\tau_{\text{lep}}\tau_{\text{had}}$ LTT, $\tau_{\text{had}}\tau_{\text{had}}$

95% CL upper limit on $\sigma(pp \rightarrow HH) / \sigma_{SM}$ (background-only hypothesis):

37/25

Results of the extrapolation

Scenario	-1σ	Expected limit	$+1\sigma$	Significance $[\sigma]$
No systematic uncert.	0.58	0.80	1.12	2.5
Baseline	0.71	0.99	1.37	2.1
MC statistical uncert. neglected	0.8	1.2	1.6	1.7
Current systematic uncert.	1.9	2.7	3.7	0.65

ATL-PHYS-PUB-2018-053

Limits on κ_{λ} , assuming $\kappa_{\lambda} = 0$ and $\kappa_t = 1$

• Allowed 1σ and 2σ CL intervals, Asimov dataset: includes $\kappa_{\lambda} = 0$ signal

Breakdown of the systematics - baseline

Source	Uncertainty (%)		
Total	± 52		
Data statistics	± 43		
Simulation statistics	± 0		
Total systematic uncertainty	± 30		
Experimental uncertaintie	s		
Luminosity	± 4.3		
Pile-up reweighting	± 7.0		
$ au_{\mathrm{had-vis}}$	± 13		
Fake- $\tau_{had-vis}$ estimation	± 8.3		
b- tagging	± 8.1		
Jets and $E_{\rm T}^{\rm miss}$	± 3.5		
Electron and muon	± 5.1		
Total experimental uncertainties	± 18		
Theoretical and modelling uncertainties			
Тор	± 6.6		
Signal	± 8.6		
$Z/\gamma^* \to \tau^+ \tau^-$	± 11		
SM Higgs boson	± 8.5		
Other backgrounds	± 4.4		
Total theoretical and modelling uncertainties	± 17		

Di-tau trigger studies

Expected 95% CL upper limit on $\sigma(pp \rightarrow HH)/\sigma_{SM}$ (without systematic uncertainties) as a function of the leading and sub-leading $\tau_{had-vis}$ minimum $p_{\rm T}$ thresholds, using the (a) nominal BDT classifier and (b) using the $\kappa_{\lambda} = 20$ BDT

- $\,\circ\,$ The loss in sensitivity is expected to be even more pronounced (the effect masked by +80 GeV jet requirement)
- Sensitivity to the Higgs self-coupling is affected more by raising the $p_{\rm T}$ thresholds (softer p_T spectrum), so the study is repeated for $\kappa_\lambda=20~{\rm BDT}$

HL-LHC HH combination

Channel	Statistical-only	Statistical + Systematic
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	0.61
$HH \to b\bar{b}\tau^+\tau^-$	2.5	2.1
$HH ightarrow b \bar{b} \gamma \gamma$	2.1	2.0
Combined	3.5	3.0

o Significance (no systematics, baseline):

• Significance as a function of κ_{λ} (no systematics, baseline):

HL-LHC HH combination

• Limits on the κ_{λ} , assuming SM signal (no systematics, baseline):

• Confidence intervals on κ_{λ} from the combination (no systematics):

$$- 68\%: 0.4 < \kappa_{\lambda} < 1.7$$

- 95%: $-0.1 < \kappa_{\lambda} < 2.7 \text{ U} 5.5 < \kappa_{\lambda} < 6.9$
- Confidence intervals on κ_{λ} from the combination (with systematics):
 - -68%: $0.3 < \kappa_{\lambda} < 1.9$
 - -95%: $-0.4 < \kappa_{\lambda} < 7.3$