

SND@LHC:

scattering and neutrino detector at the LHC for ν cross section measurement and LDM searches

Lesya Shchutska EPFL

Uppsala University Seminar June 4, 2020

Explaining BSM phenomena

Our questions with no answer so far:

- what is dark matter?
- where has the antimatter gone?
- how do neutrinos acquire a mass?

What is the energy scale of New Physics?

• not the one we are focusing on currently, as e.g. for dark matter:

Light dark matter

- weakly interacting dark matter is heavily constrained
- Lee-Weinberg bound $m_{DM} > 2 \text{ GeV}$
 - can be lifted by introducing new light boson mediators
 - DM-SM coupling reduced, DM annihilation cross section increased
- "mediators" as "portals" to a "dark sector"
 - feebly interacting ("FIPs") and low mass

Example: dark photon framework

Translation between direct detection and accelerator searches:

- dark photon A' as a mediator, and DM particles χ :
 - α_D a coupling constant between A' and χ
 - ϵ mixing parameter between A^\prime and SM photon
 - m_{χ} and $m_{A'}$ the masses of two new particles

• parameter
$$y = \epsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}} \right)$$

in the (m_{A'}, y) plane, the relic abundance curves are invariant under a change of the the α_D and the mass ratio

arXiv:1909.08632 arXiv:1808.05219

Man-made Light dark matter

- provides sensitivity to extremely small couplings ϵ^2
- imperative: small or no background
- E^{miss}/p^{miss} techniques sensitive to ε², others to ε⁴

Physics beyond colliders

Search for Hidden Particles @ CERN-based Beam Dump Facility (BDF) (CERN-PBC-REPORT-2018-001)

existing tunnels existing buildings new installations

- slow extraction (1 sec)
- high intensity proton beam:
 - 4×10^{13} p/spill
 - 4×10^{19} pot/year
 - 2×10^{20} pot/5 years
- 5 years of BDF@SPS:
 - 10¹⁸ charm mesons
 - 10¹⁴ beauty mesons
 - $10^{16} \tau$ leptons

Dual detector system:

- 1 Hidden Sector detector (HS)
 - for new, weakly coupled, long-lived particles from the Hidden Sector
- 2 Scattering and Neutrino Detector (SND)
 - neutrino physics and Light Dark Matter searches

SHiP experiment: general requirements

SHiP experiment: general requirements

Scattering and Neutrino detector concept

High ν flux is expected @ BDF:

• unique opportunity to perform studies on ν_{τ} , ν_{μ} , ν_{e} (+ cc)@SHiP SND

ν physics potential:

- first ever observation of $\overline{\nu}_{\tau}$
- ν_{τ} and $\overline{\nu}_{\tau}$ physics with high statistics wrt state of the art
- *v*-induced charm production studies
- ν_f cross section measurements

Experimental requirements:

- reconstruct ν interactions \implies Emulsion Cloud Chamber technique + TT
- tag ν flavor \implies ECC technique + μ ID system
- tag ν and $\overline{\nu} \implies$ magnetized target

# of v CC DIS int. in SND target in 2x10 ²⁰ pot						
	\bar{E} [GeV]	CC DIS int.				
ν_e	59	$1.1 imes 10^{6}$				
ν_{μ}	42	$2.7 imes10^{6}$				
ν_{τ}	52	$3.2 imes 10^4$				
$\bar{\nu}_e$	46	$2.6 imes10^5$				
$\bar{\nu}_{\mu}$	36	$6.0 imes10^5$				
$\bar{\nu}_{\tau}$	70	$2.1 imes 10^4$				

Scattering and Neutrino detector

Experimental requirements:

- reconstruct ν interactions \implies Emulsion Cloud Chamber technique + TT
- tag ν flavor \implies ECC technique + μ ID system
- tag ν and $\overline{\nu} \implies$ magnetized target

The SND magnetized target

Techniques successfully exploited in the OPERA experiment

The SND magnetized target

CEC skin

 ν Scift target tracker characteristics provide time stamp and link μ track information from the target to the magnetic spectrometer with:

- $\sigma_{x,y} \sim 30 50 \mu \text{m}$ resolution
- 6 scintillating fibre layers, total thickness 3 mm $\sim 0.05~X_0$
- multichannel SiPM at one end, ESR foils as mirrors at the other

ECC+TT combination provides a total chargeID efficiency of $\sim 65\%$ for μ produced in ν_μ CC interactions

SciFi detector as Target Tracker

- staggered layers of 250 μm thin, double-clad scintillating fibres, to form 6-layered hexagonal packed mat
- read out by the SiPM arrays covering one fibre mat end
- signal is shared between the adjacent SIPM array channels allowing for a resolution better than pitch/ $\sqrt{12}$
- mirror opposite to readout end increases the light yield by $\geq 65\%$ for the hits close to the mirror

The SND muon identification system

Passive material:

track and identify muons, and tag interactions (v, μ) in the last layers before entrance window to HS decay volume

RPCs sensitive area of \sim 2×4 m² geometrical acceptance \sim 60% $\epsilon\mu ID$ = 96.7% Hadrons' mis-identification 1.5%.

RPC prototypes built and successfully operated for muon flux and charm production measurement at SPS in 2018

SciFi modules construction for LHCb upgrade

Movie with the sound (400 MB)

Neutrino identification

- ν_e : electron shower identification in the brick (left)
- ν_{τ} : disentanglement of τ production and decay vertices (right)
- ν_{μ} : muon reconstruction in the muon ID system

Tau event in the emulsion

More events online

Light dark matter identification

- benchmark: $A' \rightarrow \chi \chi, \chi e \rightarrow \chi e$ scattering in the emulsion target
- expect single EM shower w/o associated tracks:
 - $\overline{\nu}_e N \rightarrow e X$ background reduced by tagging extra activity at the vertex
 - $\nu_e e \rightarrow \nu_e e$ slightly kinematically different
 - if an excess is observed can switch to bunched beam and use TOF
 - excess can be observed in real time using target tracker (R&D ongoing)

SHiP timeline?

Flashback to 2016:

Now:

- CDR (Comprehensive design report) is out: http://cds.cern.ch/record/2704147
- no decision on BDF (CDR: https://cds.cern.ch/record/2703984) from CERN yet
- from decision to beginning of data taking: ~ 6 years
- full dataset: +5 years

Meanwhile: Neutrinos in the LHC collisions

Neutrinos from W and b, c decays:

W decays: $\mathcal{B}(\rightarrow \nu_{\tau}) \approx 33\%$

b, c decays: $\mathcal{B}(\rightarrow \nu_{\tau}) \approx 5\%$

To get most energetic neutrinos need to be close to the beam axis!

arXiv:1804.04413, "CMS-XSEN: LHC Neutrinos at CMS. Experiment Feasibility Study", Buontempo, Dallavalle, De Lellis, Lazic, Navarria 21/38

Investigation of background in different locations

 $\frac{VN}{P} = Q1 \text{ in } S45 \text{ at } 25m$ $\frac{V}{P} = UJ53 \text{ and } UJ57 \text{ at } 90\text{-}120m$ $\frac{F}{P} = RR53 \text{ at } 237m$ $\frac{VF}{P} = TI18 \text{ at } 480m$

Results of emulsions exposure:

After 1.6 fb⁻¹ under Q1 in S45After 4.9 fb⁻¹ in RR53Reference

J. Phys. G: Nucl. Part. Phys. 46 (2019) 11500, "Physics Potential of an Experiment using LHC Neutrinos", Beni et al

Old LEP injection tunnels

At the same time FASER studied sites near IP1: the decommissioned LEP injection tunnels are quite well protected

- FASER is being installed in TI12
- TI18 available for other measurements
- TI12 and TI18 are located symmetrically around IP1
- the backgrounds are reduced due to LHC magnetic bend and absorption in 100 m of rock:

FASER: light and weakly interacting particles

FASER*ν*: *ν* interactions

- a proposed extension to FASER
- fully passive detector: emulsion films with tungsten plates
- $\eta > 9.2, 1.2$ tonnes, 285 $X_0, 10.1 \lambda_{int}$
- pilot run with 30 kg detector in 2018 in TI18: 12.5/fb collected
- affordable muon background rate!
- analysis is ongoing: $\sim 30 \nu$ candidates are expected

Simulation of the transportation through machine elements and rock

• ν_{μ} are more abundant:

- produced in π^{\pm} , K^{\pm} decays
- and in charm, beauty decays
- ν_e and ν_{τ} are more rare:
 - produced mainly in charm, beauty decays
- off-axis region ($\eta < 9$) is richer in ν from c and b

Detectable neutrinos with 150/fb

Table 2: (Third column) Integrated neutrino flux for 25 fb⁻¹ for the different neutrino flavours at the target region. (Fifth column) Expected number of CC interactions for the different neutrino flavours for 25 fb⁻¹. (Sixth Column) Expected number of CC interactions for the different neutrino flavours for 150 fb⁻¹ in the updated detector configuration.

Neutrino	$\langle E \rangle$	Neutrino	$\langle E \rangle$	CC	CC
flavour	${\rm GeV}$	Flux	${ m GeV}$	Interactions	Interactions
	(incident)		(interacting)	Initial config	Updated config
ν_{μ}	150	4.6×10^{11}	460	62	975
ν_e	390	$5.9 imes 10^{10}$	710	21	332
$\nu_{ au}$	420	3.0×10^9	720	1	18
$\bar{\nu}_{\mu}$	150	$4.0 imes 10^{11}$	480	27	429
$\bar{\nu}_e$	390	$6.2 imes 10^{10}$	740	11	174
$\bar{\nu}_{\tau}$	360	2.9×10^9	720	0	7
TOT		9.87×10^{11}		122	1935
Incoming v	ng ν Interacting ν		cting $ u$		
rmalized to 100		10 Normalized to	100 — v _µ +v _µ — v _e +v _e	• total	l target mass ~ 850
		10 ¹		about about about about a with	at 120 ν interaction 150/fb expect to ge
	600 1800 2000 E(GeV)	10-80 200 400 600 800 100	0 1200 1400 1600 1800 2000 E(GeV)	alm	ost 2000 ν interacti

10⁻¹

arXiv:2002

SND@LHC staged approach

- 2021: commissioning of the electronic detectors on surface
- 2022: data taking with an intermediate detector configuration
- 2023: addition of more SciFi layers

TI18

Where?

TI18

XSEN LoI CERN-LHCC-2019-014

Preliminary integration

Preliminary integration

LDM sensitivity

• PBC and EPS benchmark dark photon scenario:

•
$$\alpha_D = 0.1, \, \frac{m_{\chi}}{m_{A'}} = \frac{1}{3}$$

- signal production:
 - rare meson decays
 - proton bremsstrahlung
 - Drell Yan production
- signal in the detector:
 - dark photon decays promptly to 2 DM particles
 - consider scattering off atomic electrons
 - no scattering off the nuclei at the moment

Neutrino cross section measurement

- while finding or not DM is a long shot, neutrinos are for sure there
- unprecedented access to ν_e , ν_μ , ν_τ at TeV energies:
 - expected neutrino interactions in η range (7.1, 8.1): 350/ton
 - expected neutrino interactions in η range (8.0, 9.5): 950/ton
- further optimisation of detector layout to maximise ν interactions

SHiP Collaboration meeting

Current developments and next steps

Detector layout is being optimized, key features to consider:

- sampling fraction of SciFi with ECC bricks:
 - currently sensitive layer is every $10X_0$: too coarse?
- timing detector granularity:
 - target time resolution of 50 ps achieved with scintillator strips
 - consider more granular detector depending on event occupancy
- SciFi timing performance:
 - timing measurement developed for SHiP (not available in LHCb yet)
 - value measured with cosmics 350 ps
 - recent DESY testbeam data indicate improved timing resolution in EM showers

Also discuss the services in the tunnel and transportation options:

- need to provide cooling & ventilation, powering & lighting, signals, readout and networking, etc
- and some smart way to assemble the detector in the tunnel!

34 cm clearance:

Muscle considerations:

Part	Dimensions (cm)	Unit weight (kg)	Number of units
Veto plane	$100 \ge 100 \ge 25$	20	1
Muon detector			
SAMPIC boards	$50 \ge 50 \ge 30$	10	6
SAMPIC Power Supply	$50 \ge 30 \ge 30$	8	1
HV+LV supplies, crate	$50 \ge 50 \ge 30$	20	1
Veto plane	$60 \ge 60 \ge 20$	4	1
Muon timing plane	$80 \ge 80 \ge 20$	6	5
Muon x,y plane	80 x 80 x 20	8	6
SciFi			
Modules	$100 \ge 100 \ge 25$	15	4
Power supplies, crates, switch	$50 \ge 50 \ge 30$	20	6
Iron block	$80 \ge 20 \ge 20$	230*	32
Rack	$50 \ge 50 \ge 170$	25	2
Chiller	$100 \ge 60 \ge 40$	80	2
Emulsion brick	$39.7 \ge 42.6 \ge 8.5$	9	4

Table 1: The most restrictive sub-components to be transported

*It can be divided in smaller pieces to reduce weight and can pass below the LHC machine