

WP6a DFH Cryostats

DFH manufacturing & assembly options

Paul Cruikshank, Amalia Ballarino

14 February 2020

Recall

- DFH fundamental design change (single cryostat) Q3 '19
- Conceptual Design Review Nov '19
- UU/RFR visit to Cern Mid Dec '19
- Cern brainstorming on manufacturing options Jan '20

UU Collaboration with Industrial partner

Baseline Objectives:

- Produce 5 DFHX & 5 DFHM cryostats according to Cern design.
- Disassemble cryostats for delivery to Cern*

Comments

- Unit #1 of each type will be an operational spare.
- Supply of DFHX #1 and its subsequent re-assembly with SC cables by Cern provides the go ahead for DFH series manufacture.
- RFR wishes to strengthen it's competencies in cryostat technologies.

*as cables of the superconducting link and HTS current leads can only be integrated at Cern, the DFH cryostats must undergo final assembly by Cern.

From CDR Nov'19

DFHx sub-components

Uppsala & RFR visit 10/12/2019

- Cern design development according to Nov'19 CDR plan
 - 3D design + integration by end Jan ✓
 - Calculations + detail design by end March + PRR on-going
- UU & RFR cryostat production
 - RFR request 12 months manufacturing (wrt 9 month allocation in baseline)
 - Plus, need several additional wks prior to RFR manufacture start
 - RFR review of design dossier
 - RFR make price offer to UU based on Cern specification drgs
 - UU sign contract with RFR
 - UU sign collaboration agreement with Cern
- Technical
 - If DFH assembled at RFR (welding, assy, MLI, leak test, p.test, etc) it implies re-cutting prior to delivery.
 - If DFH not assembled at RFR, learning goals are difficult to achieve

DFHX #1 planning

- DFHX #1 delay ~ 5 months wrt to baseline
- DFHX #1 delay doesn't impact String planning
- DFHX #1 delay impacts the early testing of the DSHX link proto & current leads
- DFHX #1 delay impacts the start date for DFH series production & UU collaboration end date

DFH Manufacturing

How to fit in the baseline planning ?

How to collaborate most effectively ?

DFH Manufacturing & Assembly Options

Options	@ Sweden	@ Cern
Baseline	Components+assembly+test+disassembly	Assembly with CL & SC cables (Cern only)
Variant 1	Components+partial assembly	Assembly with CL & SC cables (Cern only)
Variant 2	Components	Assembly with CL & SC cables (Cern with UU/RFR)

DFH manu & assembly options

Approach	Advantages	Disadvantgaes
Baseline – DFH cryostat components are manufactured, fully assembled and tested by ind partner (without SC cabling), then disassembled (cut helium vessel welds) prior to delivery to cern. DFH, CL & link assembled by Cern.	Validation of mechanical assy, l.test, p. test, CE marking. Ind partner builds cryostat with KT from cern.	Deformations due to welding & cutting may hinder assy at cern. Manpower loss: p.test, l.test, CE cert, assy/dis-assy. Assy confirmation in industry doesn't consider cable integration.
Variant 1 – DFH cryostat components manufactured and partially assembled by ind. partner without full welding of helium vessel (without SC cabling), then disassembled prior to delivery to cern. DFH, CL & link assembled by Cern.	Welding/cutting eliminated. Minor assy in industry, so reduced manpower.	No I.test or p.test on helium vessel. No CE marking. Manpower loss: assy/disassy. Assy validation incomplete. KT for ind partner is limited.
Variant 2 – DFH cryostat components manufactured by ind. partner then assembled and tested at cern with simultaneous SC cable integration. DFH, CL & link assembled by Cern, UU & RFR.	Disassembly/cutting eliminated Assy considers SC cable integration. Assy execution, optimisation & issues (including reworking) resolved by cern/UU/ind partner together. Max KT opportunity for industrial partner.	Increased assembly resources required at cern.

Assemblability validation of UU/RFR supply

Approach	Validation objective	Vacuum vessel	Helium vessel	Internal supports	Assy tooling	Comments
Baseline	Cryostat assemblability Link & CL assemblability*	√	√ ×	√ ×	√ ×	Cryostat is assembled with neither CL nor SC link so constraints during final assembly sequence at Cern are not evident
Variant 1	Cryostat assemblability Link & CL assemblability*	✓ ✓	×	×	×	Vacuum chamber can be assembled on external supports. Assy checks on components can be made to validate machining tolerances but assy sequence can't be performed.
Variant 2	Cryostat assemblability Link & CL assemblability*	√ √	✓ ✓	✓ ✓	√ √	Assy sequence with link and current leads can be validated/optimised

HILUMI

*mechanical interfaces to cryostat, routing of SC cables, splice execution, routing of instrumentation cabling.

DFHX #1 Knowledge Transfer Opportunities – Variant 2

KT Opportunity	Vacuum vessel	Helium vessel	Internal supports	External Supports	Multi-layer insulation	Cryostat Assembly
Material choice						
Component manu				KT@RFR		
Welding						
Cleaning						
HV assembly						
Sealing tech						
Instrumentation						
Pumping						
Leak testing			KT@RFR			
Pressure test					KT@cern	

3-4 months assembly duration, RFR % presence/timing to be agreed, Component delivery sets start date

Planning Optimisation

- Consider strategy for DFHX #1 ≠ DFH series
- @UU/RFR
 - Baseline scope = components+assy+test+disassy
 - Variant 2 scope = components
- @Cern
 - Baseline design change/reworking = transport Cern/RFR/Cern
 - Variant 2 design change/reworking = Cern workshops
- Comments
 - Cern design is based on Cern assembly methods & existing tooling
 - Variant 2 RFR can built-to-print with higher confidence
 - Variant 2 knowledge transfer easier to integrate

⇒ RFR manufacturing duration in Sweden reduced with Variant 2?

DFH baseline & variants summary

Baseline

- Provides validation of cryostat assemblability in industry with the risk that SC cable integration difficulties can be found quite late at cern, requiring reworking of the supply.
- Manpower to assemble and test the cryostat in industry is lost due to the obligation to reopen the helium vessel.

Variant 1

- Provides a cost effective approach for series production with a validated solution
- Manpower resource needs are lower in industry but higher at cern.

Variant 2

- Provides validation of cryostat assemblability, plus validation of SC link and current lead assemblatility.
- Brings together Cern, Uppsala and RFR during the assembly phase, facilitating execution/problem solving/optimization/learning.
- Provides an effective approach for start-of-series production eg DFHX #1 & DFHM #1.

DFH proposal

- Propose Variant 2 for production of DFHX #1 & DFHM #1
- Propose Variant 1 or Variant 2 for production of DFH series, with RFR assistance at Cern.
- Explore how UU, RFR and Cern can drive the component and assembly works, ensuring timely assembly of DFHX #1 at Cern in early 2021 (with CL and SC link),.....and providing maximum opportunities for knowledge transfer.

Thanks for your attention !

Spare Slides

