Time For Hyperons

- Towards Reconstruction of Long-Lived Particles on Free-Streaming Data at PANDA at FAIR

Jenny Regina

Department of Physics and Astronomy Uppsala University

Half-Time Seminar, Online, May 07, 2020

Outline:

- Hyperons
- PANDA at FAIR
- Hyperon detector signatures
- Time-sorted Data
- Clusterization Procedure
- Quality-Assurance
- Results

Quantum Chromodynamics

- Perturbative QCD
- Asymptotic Freedom

Nuclei Hadrons

Particles (e.g. quarks, gluons)

Relevant degrees of freedom in intermediate to lower ranges?

Hyperons – What are they? Baryons containing one or more *s* (*c*) quark

- Relatively long life-times
 - Need tracking algorithms working for particles for particles from displaced vertices
- A involved in many decays
 - Reconstruction of Λ crucial for performing hyperon physics

Hyperon and Quark Content	$c\tau \ [cm]$	Mean lifetime [s]	Mass $[GeV/c^2]$	Main decay and branching ratio
$ \begin{array}{c} \Lambda \text{ (uds)} \\ \Sigma^+ \text{ (uus)} \\ \Sigma^0 \text{ (uds)} \\ \Sigma^- \text{ (dds)} \\ \Xi^0 \text{ (uss)} \end{array} $	$8.0 \\ 2.4 \\ 2.2 \cdot 10^{-9} \\ 2.4 \\ 8.7$	$2.60 \cdot 10^{-10} \\ 8.01 \cdot 10^{-11} \\ 7.4 \cdot 10^{-20} \\ 1.48 \cdot 10^{-10} \\ 2.90 \cdot 10^{-10}$	$1.116 \\ 1.189 \\ 1.193 \\ 1.197 \\ 1.315$	$p\pi^{-} (64 \%) p\pi^{0} (52 \%) \Lambda\gamma (100 \%) n\pi^{-} (100 \%) \Lambda\pi^{0} (99 \%)$
$\frac{\Xi^{-} (dss)}{\Omega^{-} (sss)}$	$4.9 \\ 2.5$	$\frac{1.64 \cdot 10^{-10}}{8.21 \cdot 10^{-11}}$	$1.321 \\ 1.672$	$\Lambda \pi^{-} (100 \%) \\ \Lambda K^{-} (68 \%)$

Scale: $m_s \sim 100 \text{ MeV} \sim \Lambda_{OCD} \sim 220 \text{ MeV}$

Probes QCD in the confinement domain!

Hyperons – Why are they interesting to study?

$\Lambda \rightarrow p\pi^{-}$

Polarization accessible via weak, parity-violating decay

Quark model (left) and Meson exchange model (right)

- Rich set of spin observables obtainable for hyperon decays ٠
 - Theoretical predictions [*] relate sign and value of some observables to the production model

Hyperon spin observables can shed light on relevant degrees of freedom!

[*] What can we learn from antihyperon-hyperon production? M.Alberg, Nucl. Phys. A 655 (1999) 1. $_{_{\it A}}$

Hyperons – Why are they interesting to study?

 $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$

Figure above from: E. Klempt et al. Antinucleonnucleon interaction at low energy: scattering and protonium, Physics Reports **368** (2002)119-316.

 $\bar{p}p$

 π^{-}

Physics Pillars

- Nucleon structure
- Strangeness physics
- Charm and exotics
- Hadrons in nuclei

Beam / Target

- Stored anti-proton beam
 - 1.5 GeV/c <p_{beam}<15 GeV/c
 - Quasi-continuous beam
- Proton target
 - Fixed

 \bar{p} – beam

Detector

- Almost full 4π
- Target spectrometer
 - solenoid field
- Forward spectrometer
 - dipole field
- Tracking (offline and online)
 - Mainly < 10 tracks/event
- Vertexing
- PID
- Calorimetry

Straw Tube Tracker

Micro Vertex

Detector

Forward Tracking

Stations

Readout

- Average interaction rate:
 - Phase2 (full luminosity): 20 MHz
 - Phase1: 2 MHz
- Continuous readout
- Background and signal similar
 - Software-based event filtering
 - Tracking Information

Straw Tube Tracker of PANDA

- 4 224 closely packed single channel readout drift tubes

Straw Tube Tracker of PANDA

- 4 224 closely packed single channel readout drift tubes

Straw Tube Tracker of PANDA

Drift Circles:

Circle through point of closest approach of track to anode wire

Maximum drift time of electrons: **250 ns**

Decay Topologies and Simulation

- Measured at LEAR ٠
- Provide good testing ground for ٠ tracking algorithms
- Forward peaking angular ٠ distribution
- Simulated in EvtGen at ٠ p_{beam}=1.642, 7.0 and 15.0 GeV/c

- PANDA will be first to measure angular distribution
- Isotropic angular distribution ٠ used in simulations
- Simulated in EvtGen at ٠ p_{beam}=7.0 GeV/c

- No measured cross section •
- Isotropic angular distribution • used in simulations
- Simulated in EvtGen at • p_{beam}=15.0 GeV/c

$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, Momentum distributions

- Overlap between momentum regions of particles – antiparticles at lower p_{beam}
- Clear distinction between momentum regions of particles – antiparticles at larger p_{beam}
- Particles obtain very low p_l at higher p_{beam}
 - Backward in CM system

$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, STT hits / Track

17

$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, STT hits / Track

% refers to no. of tracks with \geq 4 STT hits

- Long tail at larger number of hits for $\pi^- \rightarrow$ Somewhat lower STT coverage for
 - Indicates spiralling behavior
- Antiparticles going into FS
- Similar at 15 GeV/c

 \rightarrow Somewhat lower STT coverage for final state particles larger p_{beam}

$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, STT hits / Track

 $\overline{p}p \rightarrow \overline{\Xi}^+\Xi^-$

final state particles

• Many decay vertices within MVD volume

20

 $\overline{\Omega}^+ \Omega^-$

Particle type	% with ≥ 4 STT hits	Particle type	% with ≥ 4 STT hits
p	63	$ar{p}$	61
π^-	56	π^+	55
K^{-}	63	K^+	63

- Most decay vertices within STT
- Many decay vertices within MVD
- Most in in forward (downstream) direction
- Very good STT coverage for all final state particles

Λ

Λ

K

 $\bar{p}p$

 π^+

π

- Most decay vertices within STT
- Many decay vertices within MVD
- Most in in forward (downstream) direction
- Very good STT coverage for all final state particles

Event-Sorted to Time-Sorted Data

Time Distribution

Relevant range of interaction rates for Phase1: 0.5 – 4.0 MHz

Event mixing also occur but to smaller extent at lower interaction rate!

Event Mixing in the Straw Tube Tracker

- One event
- Almost possible to find tracks by eye using spatial neighborhood relations

- Event mixing (40 events)
- Not possible to cluster track hits by only spatial neighborhood relations
 4D tracking!

Cellular Automaton Hit Clusterization

Algorithm developed by J. Schumann [1] Time-based modifications by J. Regina

- A. Tracks traverse STT
- B. Hit tubes are numbered
- *C. Unambiguous* hits are iteratively renumbered until hits in one cluster have same number
- D. Ambiguous hits are given all numbers possible

Parallelizable

- Implemented on GPUs
- Candidate for online usage

Does not use IP as constraint

- Suitable for reconstructing secondary tracks
- Will be used following a primary track finder

≥ 3 STT hits required

4D tracking: hits can only be combined if timestamps < 250 ns (or certain set value)

[1] Jette Shumann, *Entwicklung eines schnellen Algorithmus zur Suche von Teilchenspuren im "Straw Tube Tracker" des PANDA-Detectors*, Bachelor Thesis, 2013

Tracking Quality Assurance

- Quality Assurance (QA) for tracking algorithms
- Momentum resolutions
- Number of *true, false* and *missing* hits / track
- Track Categories
- To give *fair* representation of tracking algorithm:
 - compare to only tracks which could be reconstructed in relevant detectors
- <u>Reference track set:</u> *ideally* reconstructed with certain hit requirement
- *True MC track* is defined as the one which gave rise to the majority of hits the reconstructed track

Track Categories

- Hit from MC Track # 2 Hit from MC Track # 1 **Missing Hit** Requirement: ≥ 6 Found Hits from one MC Track **Fully Pure Found** Fully Impure Found **Partially Pure Found** Partially Impure Found **Ghost Track** First track: Fully Found Second track: Clone

Fully Purely found

• All and only true hits found

Fully Impurely found

- All hits from one track found
- Impurities allowed up to 30% of all hits in reco track

Partially Purely found

- Majority of found hits belong to same MC track
- Not all hits of MC track found
- Impurities not allowed

Partially Impurely found

- >70% of all hits belong to one MC Track
- Not all hits of MC track found
- Impurities allowed

Ghosts

• Reco track does not correspond to a MC track

Clones

• One track was found more than once

Efficiencies

- Time-Based Reconstruction

Fake Rate

- Time-Based Reconstruction

- High fake rates, especially clones, at all interaction rates
- Increase in fake rate is more dramatic with 3D tracking
- Time-stamp inclusion reduces fake rate with orders of magnitude at higher interaction rates

Hits per Track

- Pattern resembles characteristic STT hit distribution at all interaction rates
- Tracks reconstructed in shorter tracklets at higher interaction rates
- More tracks at higher interaction rates

Efficiencies

- Time-Based Reconstruction at 2.0 MHz

Average time / data chunk for 100 chunks containing

background events

Case	Processing time [ms]	% of full reconstruction processing time
1	0,51	5,1 > < 1 %
2	0,58	5,8 difference

Track reconstruction performed without a pre-processing event building

Summary

Hyperons

- Tool for probing QCD at intermediate-lower energy scales
- Can be reconstructed using STT information at PANDA

Cellular Automaton-based hit clusterization

- Algorithm can accept time sorted hit data
- Efficiency stable over interaction rate 0.5-4.0 MHz
- Time-stamp utilization suppresses fake rate at higher interaction rates

• For PANDA tracking:

- Ghost and clone cleanup procedure
- Try the Cellular Automaton together with primary track finder
- (= track finder using IP as constraint)
- For me personally:
 - Join PANDA phase0 project: PANDA@HADES
 - Hyperon analysis on data
 - Vertex fitting tool + kinematic fitter

Summary

Hyperons

- Tool for probing QCD at intermediate-lower energy scales
- Can be reconstructed using STT information at PANDA

Cellular Automaton-based hit clusterization

- Algorithm can accept time sorted hit data
- Efficiency stable over interaction rate 0.5-4.0 MHz
- Time-stamp utilization suppresses fake rate at higher interaction rates

Backup

Software Trigger of PANDA

FAIR – Facility for Anti-proton and Ion Research

HESR – High Energy Storage Ring

Quasi Continuous Beam:

interaction rate Poisson Distributed

PandaRoot

- Official PANDA software
- Based on ROOT and VMC (Virtual Monte Carlo)

C++

Detector geometry descriptions, event display, track followers *e.g.* Geane ...

Derived from FairRoot common for many FAIR experiments

$\overline{p}p \rightarrow \overline{\Xi}^+\Xi^-, \overline{p}p \rightarrow \overline{\Omega}^+\Omega^-$, Momentum Distribution

The Straw Tube Tracker (STT) of PANDA

Isochrones in Track Finder

- A. Tracks traverse STT
- B. Find lines which tangent two adjacent isochrones
- C. Obtain angle of all lines. Keep the two lines with smallest difference between angles
- D. Position where these lines tangent center isochrone →corrected hit position

Assumption of stright line travel path between two isochrones

The Riemann Fit

Linearizes track fitting problem -> Fast!

Points to be fitted

Add z-dimension

Map onto paraboloid

 $z = x^2 + y^2$

For STT, u=x, v=y

Z

Calculation of plane through 3D points simple eigenvalue determination

From \vec{n} , cirlcle parameters are known:

y

 $u_0 =$ $2n_3 \\ n_2$ Circle center v_0 $2n_3$ $-n_3^2-4cn_3$ Radius

 $c+n_1x+n_2y+n_3z=0$

Time-based Data Structure

Classically, online track reconstruction is performed on event-based data structure – this is changing!

Tracks per event

- Tracks with > 5 Straw Tube Tracker hits (tracks which have a chance of being reasonable well reconstructed)
- Mean 2.5-3

Time Clustering

1. Ask every hit for its time stamp

Compare it to time stamps of its spatial neighbors
 if Δ Time Stamp < Cluster Time Neighbors accepted

Cluster Time = 250 ns

Event Mixing at PANDA

Hits in the Straw Tube Tracker

- **500 ns** between start of two consecutive events
- Clearly separated events (mostly)!

- 50 ns between start of two consecutive events
- Event mixing!

Event mixing also occur but to smaller extent at lower interaction rate due to quasi continuous beam!

Data Storage

FairLinks: pointers set in one data stage for an object. They are pointing back to the objects used to create the object in question

Branch: data objects, *e.g.* Hits, tracks **Entry:** event number **Index:** Position in TClonesArray

Event-Sorted vs. Time-Sorted Data

Sim: events are simulatedDigi: Digis are sorted event by eventReco: Reconstruction is done event by event

Reco: Reconstruction is done on hits without prior

knowledge of which event the hits belong to

into bursts

51

Fetching the Time-Sorted Data

- Search for gap in hit data and cut between intervals there
- Intervals will have varying length

