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Higgs Boson:  
Discovery to Precision…

2

2012: Discovery of the Higgs boson

Now



What is the nature of dark matter 
& dark energy?

Why are neutrinos massive?

Why is there more matter than anti-
matter?
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Is the electroweak vacuum stable?

What are the origins of the LHCb 
flavour anomaly?

How can the Higgs boson be 
light when the mass 
receives large quantum 
corrections?What are the details of cosmic 

inflation?
3
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• LHC: 27 km circumference
• Collide protons with a centre-of-mass energy 

of 13 TeV  
(99.999999% of speed of light)

• 40 Million collisions/second in ATLAS/CMS
• ~25 Petabyte collision data/year / experiment

• Planned High Luminosity Upgrade  
(HL-LHC)

• Higher data rate, higher pile-up
• Big data challenges ahead!

• Begin operation O(2026)



Many results…
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http://cms.web.cern.ch/org/
physics-papers-timeline

…but no new  
 physics so far
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• Precision measurements and searches for new physics need

• better tools to identify known particles and processes

• higher accuracy and speed

• Finding unknown signatures needs

• new ways of analysing data

• Future data taking with higher collision rates needs:

• faster reconstruction and triggering

• faster simulation and event generation

(a) promising answer: Deep Learning

What next?



Prelude
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What is deep learning?



Basics of Neural Networks

8

Supervised
Attempt to learn some target: 
classification or regression tasks

Need to have a dataset with known 
targets (typically from MC 
simulation)

Unsupervised
No target, learn the probability 
distribution

Generative models and  
anomaly detection

• Backpropagation + Gradient descent

• Pass input (x1, x2) to neural networks

• Calculate output y and (problem specific) 
loss function L

• Find gradient of loss function with 
respect to weights 

• Use gradient to find new weights



Complexity

2 weights

300 weights

25 million weights: 
2016 state of the art for 

image classification
Deep Learning:  
Complex network + low level inputs

71 million weights: 
generative network from 

physics
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Menu

Supervised Classification: 
 Heavy Resonance Tagging 

Event Classification  

Learning from Data: 
 Anomaly Detection

Generative Models: 
Fast calorimeter simulation 



Build better tools to 
identify known particles

11



We want to infer underlying 
physics from measurements 

in the detector.

How can deep neural 
networks assist us?

http://www.quantumdiaries.org/

+
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Heavy Resonance Tagging

Top Quark

+ =

(Simulated) Detector

(ignoring parton shower, hadronisation,…)

10 Images

• Goal: Distinguish decay products of  
heavy resonance (top quark, W/Z boson, Higgs boson) from  
other particles (light quark/gluon jets)

• Needed for searches and measurements

• Achieve by looking at substructure of jets in the detector
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Heavy Resonance Tagging

Top Quark

+ =

(Simulated) Detector

(ignoring parton shower, hadronisation,…)

10000 Images

• Goal: Distinguish decay products of  
heavy resonance (top quark, W/Z boson, Higgs boson) from  
other particles (light quark/gluon jets)

• Needed for searches and measurements

• Achieve by looking at substructure of jets in the detector



=
Top Quark  
 Jet

QCD Jet

=

• Binary classification task
• Fully supervised learning 

(using simulation)
• 40x40 Pixels, ET

• Perfectly suited for deep learning algorithms

15
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Architecture Overview
Community performance 

comparison (toy dataset public): 
1902.09914 (GK,  Plehn, et al) • 1.2M simulated top quark and background  

events

• Great test-bed to compare different data 
representations

• (and, of course, useful for new physics searches, 
top/Higgs measurements)

• Still surprising gains in performance

• Although it needs to be seen how well these 
translate to data

• (Also developments in flavour tagging,  
not covered here)

• Best performance from graph networks



Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Graph neural networks
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ParticleNet = Graphs
• Images are a convenient representation, but do not  

capture real structure of our measurements

• Alternative: Graphs

• Vertex: Particle

• Edge: Distance (for example in eta-phi space)

• Active development of graphs on CS side, but already HEP 
applications:

• Particle Net (best performing top tagger in community study, 
based on EdgeConv)

• Calorimeter Clustering (1902.07987)

• Tracking (1810.06111)

18 1902.08570
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Performance on realistic 
simulation and data in CMS: 

JME-18-002

Heavy Resonance 
 Tagging in CMS
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• Stable algorithmic predictions and well-understood uncertainties are 
key requirements for quantitative science

• Deal with systematic differences between  
training data (simulation) and testing data (experiment)

Learning uncertainty

" DEE ; ! " ,
SEE: an

"

Modelling Uncertainty Removing Correlation

1904.10004 & 2003.11099

2001.05310



Standard (Deterministic)  
Neural Net

Bayesian Neural Net

21

Quantifying  
Uncertainty

• Provide per-prediction 
uncertainty on neural network 
output: Bayesian networks

• Weights replaced by probability 
distributions

• Prediction vis MC sampling



Classification sigmoid correlates mean and 
standard deviation

BNN captures effect of 
finite training data

22

Statistical Uncertainty



Systematic Uncertainty
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• Look at regression task  
(predict top quark momentum from 
measured calorimeter energies)

• Each sampling predicts one Gauss or 
multi-Gauss distribution

• Average to get network prediction

Learns to correctly 
predict true  
distribution..

Including smearing 
due to systematic 
uncertainties:
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• Reduce impact of other variables on analysis result

• Either remove correlation of classifier output with a systematic 
uncertainty or another variable

Decorrelation

" DEE ; ! " ,
SEE: an

"



Approaches

• Obscurity:

• Do not give mass [will be using this as stand-in for any variable we want to decor relate agains] as input

• Simple, does not work

• Data planing (1709.10106, 1908.08959):

• Reweight input distributions to be flat

• Simple, limited power

• Designing Decorrelated Taggers - DDT (1603.00027):

• Linearly transform output to be stable for one working point by subtracting for each bin

• Add KL/JS divergence to loss

• Promising idea, but only works for one working point. Binning needed.

• Use complex adversarial ML (1611.01046, 1703.03507)

• Powerful, hard to tune

• Basic idea: If adversary can infer mass from classifier output,  the output is 
not decorrelated 

be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds

4



the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Comparison

26

ATL-PHYS-PUB-2018-014 
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Higher Rejection

Our recast of  
ATLAS study



Problem
• Adversarial training is inherently unstable (hard to set up 

and sensitive to hyper parameter changes)

• Looking for a saddle point 
 
 

• Find a regulariser term that fulfils the same  
goal but allows simple training to convergence  
 

• Use distance correlation

27



Comparison
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• Decorrelation using DisCo achieves 
same performance as adversarial  
method, easier to train



Fast Simulation

29
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Fast Simulation / Generation

Problem: Spend large fraction of our computing 
resources on event generation and detector 
simulation

Potential Solution: Use generative  
machine learning models to accelerate simulation
(1705.02355, 1807.01954, 1912.06794, 2005.05334)

(out since yesterday!)
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Generators

wired.com

We have:
many images
(or collision events,  
or detector readouts, …)

We want: more images.

(Specifically: New examples that 
are similar to the examples, but 
not exact copies)

How to encode in  
neural net?

http://wired.com


GAN

• Generative Adversarial Network

• Generator generates new fake images from noise 

• Second network (discriminator) learns to distinguish fake from real images

• Training via mutual feedback

32



VAE

• Variational Autoencoder

• Encode examples into latent space of network

• Sample from latent space to produce new examples

33
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https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/


Concrete Problem

35

Describe photon showers in high 
granularity calorimeter prototype

• 30x30x30 cells (Si-W)
• Photon energies from 10 to 100 GeV
• Use 950k examples (uniform in energy)  

created with GEANT4 to train

• Not only model individual images but  
also differential distributions



Architecture
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• BIB-AE (based on 1912.00830)  
with added post-processing

• Unifies features of GAN and VAE
• 71M trainable parameters
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Correctly describe distribution  
down to 0.2 MIPs

Results
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Results

Mean

Width

Total energy is also well 
described. 
 
Next challenge:
Also perfect correlations, 
more varied inputs



Anomaly Searches
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Can we look for new physics, 
without knowing what to look 

for?

Can we avoid systematic 
uncertainties in searches?

40



Anomaly detection ideas

41

• Developing field of different approaches:

(from 2001.04990)



(Variational) Autoencoder

• Latent space/bottleneck with compressed representation

• Dimension reduction

• Denoising

• Generation

• And anomaly finding

L = (ŷ � g(f(x)))2

kvfrans
deeplearningbook.org 42

http://deeplearningbook.org


Autoencoder for Physics

• Can we find new physics without 
knowing what to look for?

• Train on pure QCD light quark/gluon 
jets and apply to top tagging

• Top quarks/ new physics identified as 
anomaly

QCD or What?
T Heimel, GK, T Plehn, JM Thompson, 1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, D Shih, 1808.08992 43



Anomaly detection ideas
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• Developing field of different approaches

(from 2001.04990)



CWola Hunting
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• Assume signal is resonant in one variable

• Define signal region and sidebands

• Train classifier and look for excess
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Distinguishing mixed samples is equivalent to 
signal/background classification!

Classification without labels: Learning from mixed samples in high 
energy physics, EM Metodiev, B Nachman, J Thaler, 1708.02949
Anomaly Detection for Resonant New Physics with Machine Learning
JH Collins, K Howe, B Nachman
1805.02664

First result by  
ATLAS!!! 
2005.02983



Anomaly detection ideas
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• Developing field of different approaches

(from 2001.04990)



ANODE: ANOmaly detection with 
Density Estimation

47

• Build density estimator in sideband region PSB

• Extrapolation to signal region gives background estimate PSB  -> PBG

• Build density estimator in signal region PSR

• Likelihood ratio R=PSR/PBG

• Density estimation via MAF (1705.07057)  
(Masked Autoregressive Flow)

An anomaly is a local over density of events

Anomaly Detection with Density Estimation, B 
Nachman, D Shhih 2001.04990



LHC Olympics 2020
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• No evidence for new physics found at the LHC

• Could it be that we are looking in the wrong 
places?

• Recent new ideas for anomaly detection

• Data challenge to spur development of new 
approaches and understand the trade-offs 
between different approaches

• -> LHC Olympics 2020 Organisers: Ben Nachmann, 
David Shih & GK

https://lhco2020.github.io/homepage/
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Timeline & Dataset
• April 2019:  

Released R&D dataset 

• Novemeber/December 2019:  
Released 3 black box datasets

• January 2020:  
Submission of black-box results by participating 
groups

• January 16, 2020:  
Unveiling of black box 1 at ML4Jets

• July 2020:  
Online Anomaly mini-workshop  
(likely Week of July 13th 2020)

• R&D Dataset:

• Pythia 8 / Delphes

• 1M QCD events 
100k labelled signal

• 4-vectors of reconstructed particles

• No particle ID, charge, …

•  Single R=1 jet trigger pT>1.2 TeV

https://zenodo.org/record/3547722#.XifetFNKh24


Opening black box 1
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• Total number of 10 submissions,  
including:

• Autoencoders

• CWoLa hunting

• PCA outlier detection

• LSTM / RNN

• CNN+BDT

• density estimation

• biological neural network

Resonance Mass



Closing
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Conclusions

• Deep Learning for particle physics is rapidly developing solutions to a wide 
range of problems

• Object and Event classification

• Anomaly detection

• Robustness and uncertainties

• Fast reconstruction and simulation

• If you are excited now:

• Consider joining the LHC Olympics: -> LHC Olympics 2020

• Automate parts of our ML tasks?
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https://lhco2020.github.io/homepage/


Thank you!


