

X-RAY FREE ELECTRON LASER AT FREIA: WORK IN PROGRESS

Anatoliy Opanasenko, Kevin Pepitone, Dragos Dancila, Marek Jacewicz, Akira Miyazaki, Maja Ovegård, Roger Ruber, Jan Rusz, Georgii Shamuilov, Peter Salen, Zoltan Tibai, Hermann Durr, Vitaliy Goryashko

May 4th 2020, Uppsala

Towards a compact FEL: ASU concept

Table-top FEL is a very old idea but there is a strong renewed interest. It is an incoherent source because of shot noise of the electron beam.

FEL startup from e^- beam noise

Z. Huang

Towards a compact FEL: ASU concept

The electron beam is nanostructured to emit coherent radiation in an optical undulator driven by an external (IR) laser.

Towards Coherent FREIA FEL

Design target

- Stability
- Photon flux comparable to that of the synchrotron beamline
- Flexible time structure

Design challenge

- Beam bunching at the nanometer (nm) scale
- Beam emittance at the nm scale

Design strategies for beam structuring

- Beam structuring via electron diffraction + emittance exchange
- Beam structuring using plasmonic cathodes + emittance exchange
- Modulated beam from a cold electron source
- Beam modulation by an optical laser (*least promising*)

Design strategies for ultralow emittance

- Blow-out beam generation
- Collimation of a high-emittance beam
- Field emitters

 ellipsoidal bunches in blow-out regime 2. electron diffraction

3. beam structuring: 4-f imaging

4. bunch compression

ellipsoidal
bunches in
blow-out
regime

3. beam structuring: 4-f imaging

4. bunch compression

- The uniformly filled ellipsoidal electron bunch is a dream in beam physics.
- Space-charge field is linear.
- Difficult to realize in practice.
- Uniform prolate massive spheroid will collapse under its own gravitational field into a flat disk.

$$\rho(r,z) = \sigma_0 \sqrt{1 - (r/R)^2} \delta(z)$$

- A flat charged disk can blow out into a fully fledged ellipsoidal bunch, O.J. Luiten, PRL 094802 (2004).
- Density is limited by the image charge.

Updated layout and future work

1. ellipsoidal bunches in blow-out regime	2. bunch compression	3. acceleration to 3 MeV	4. electron diffraction
5. beamstructuring:4-f imaging	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray optics	11. end stations	
Done			
Partly done			
Planned			

Workflow for Coherent FREIA FEL

e-source	Beam structuring	Main accelerator	Emittance exchange	FEL lasing	X-ray science
gun cavity: Anatoliy – Concept & RF design; Dragos: design & Construction e-dynamics: Kevin & Zoltan RF source: Dragos e-gun design & Construction: Kevin Kevin	e-diffraction: Peter & Vitaliy – basic scaling; Jan Rusz – full simulations; Dragos – fabrication Kevin – heat load plasmonic cathodes: Dragos & Marek – concepts & EM simulations	booster: Anatoliy – RF design e-dynamics: Anatoliy, Kevin, Ye Zou SC cavity: Akira, Han & Roger cryomodule Rocio, Han, Roger magnets: Kevin,	Zoltan Vitaliy Kevin	optical cavity: Vitaliy & Peter coherent emission: Vitaliy X-ray shaping: Peter	science case: Hermann
	Georgii				

Summary

- Developed a simulation environment: CST + GPT + ASTRA + MATLAB
- Two beam dynamics codes are used for benchmark.
- Developed a low-energy design for potential experimental tests.
- Ongoing work on a higher-energy accelerator.