Update from the XENON dark matter project OBSERVATION OF EXCESS ELECTRONIC-RECOIL EVENTS IN XENON1T arXiv:2006.09721

ADAM BROWN abrown@physik.uzh.ch On behalf of: XENON Collaboration and X. Mougeot

UPPSALA UNIVERSITY 10th September 2020

Laboratori Nazionali del Gran Sasso Italy

The TPC

Particle

Nuclear recoil searches

Adam Brown | abrown@physik.uzh.ch

PRL 123, 241803 (2019) — S2-only Migdal PRL 123, 251801 (2019) — S2-only NR PRL 121, 111302 (2018) — S1 and S2 search

What about the electronic recoils?

Adam Brown | abrown@physik.uzh.ch

This talk

Search for excess above known BGs

Energy reconstruction

Threshold at 10% detection efficiency

BACKGROUND MODELLING

Backgrounds

Background sources modelled with Geant4

Most rates constrained by other measurements or time dependence

Search for excess over known backgrounds between 1 and 210 keV

10³ Events/(t·y·keV) 10² 10^{1}

11

Backgrounds

Dataset split in 2

Different rates of activated lines

IS THE EXCESS REAL?

Efficiency and energy reconstruction

Mistake in energy reconstruction? Mis-modelled efficiency?

Look at Rn-220 calibration data

Beta-decay just like dominant background

p-value 0.58

Cannot explain the excess

Shape of background spectrum

The Pb-214 spectrum has an enhancement at low energy

Atomic effects **do** lead to rate enhancement

Not properly considered in GEANT4

Teamed up with X. Mougeot (CEA) to calculate the correct spectrum

Adam Brown | abrown@physik.uzh.ch

Uncertainty of 6% at low energy too small (need 50% increase)

Statistical fluctuations

Could it be a statistical fluke? What's with the dip at 17 kev?

Single bin too thin compared to resolution Goes away when rebinning We do unbinned analysis

POSSIBLE EXPLANATIONS

IT COULD BE A NEW BACKGROUND

_

Events/(t·y·keV)

Tritium

3.2σ over background (159 ± 51) ev/keV/t/yr < 3 atoms ³H / kg Xe

Beta decay

Q value 18.6 keV

Half life 12.3 years

Tritium — possible origins

 -10^{-19}

[mol/mol] 10^{-21} **10**⁻²³ ³H/Xe 10^{-25}

 10^{-27}

Where from?

Cosmogenic activation?

Xe spallation 31.58/kg/d at sea level (Zhang et al., Astropart. Phys 84, 62 (2016)

Seems unlikely

Tritium — possible origins

Emanation from detector materials?

Atmospheric abundance (5–10)×10⁻¹⁸ HTO/H₂O

Best fit \implies 60–120 ppb H₂O+H₂

Can neither confirm nor rule out tritium

All other significances reported both with and without tritium in BG mode

HTO Light yield \implies O(1) ppb H₂O

HT **Electron lifetime** \implies < ppb O₂-equivalent impurities

Argon-37

2.8 keV energy released after EC

X-rays / Auger electrons

Tested as calibration source

Adam Brown | abrown@physik.uzh.ch

Always present? No, removed by distillation Air leak? Would also introduce Kr

Ruled out

COULD IT BE **NEW PHYSICS?**

Solar axions

Solar axions only: 3.4σ over background Axions + ³H: 2.0σ over background + ³H

Solar axions

3D allowed region for the three parameters

In tension with astrophysical constraints e.g. from stellar cooling

(arXiv 1708.02111)

Adam Brown | abrown@physik.uzh.ch

At least one of ABC and Primakoff non-zero

Massive neutrinos have magnetic moment

$$\mu_{\nu} \approx 3 \cdot 10^{-19} \left(\frac{m_{\nu}}{\text{eV}}\right) \mu_{\text{B}}$$

A larger value ($\gtrsim 10^{-15} \mu_{\rm B}$) \Longrightarrow Majorana neutrinos

Would lead to enhanced neutrino-electron scattering cross-section

Neutrino magnetic moment

Mag. Moment: 3.2σ over background

with ³H: 0.9 σ over background + ³H

μ_{ν} : (1.4 – 2.9) × 10⁻¹¹ $\mu_{\rm B}$

Compatible with other experiments

In tension with astrophysical constraints

arXiv 1910.10568

arXiv 1907.00115

Bosonic dark matter

Search for a mono-energetic peak

Could be dark matter,

e.g. axion-like particle or dark photon

Most significant at 2.3 ± 0.2 keV

No > 3σ excess \implies only report limits

Mono-energetic peak: 3.0σ over background (global)

Solar axions 3.4σ

Axions + ${}^{3}H$ 2.0 σ

XENONNT

Some of what's new in XENONnT

Rutron veto

- Inner region of existing muon veto
- optically separate
- 120 additional PMTs
- Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

222R distillation

- Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system
- New system, PoP in XENON1T

Adam Brown | abrown@physik.uzh.ch

Larger TPC

- Total 8.4 t LXe
- 5.9 t in TPC
- ~ 4 t fiducial
- 248 → 494 PMTs

purification

- Faster xenon cleaning \bullet
- 5 L/min LXe (2500 slpm)
- XENON1T ~ 100 slpm

XENOnT — watch this space

Adam Brown | abrown@physik.uzh.ch

- Cryostat has been closed for several months
- Just recently started filling it with liquid xenon

First scintillation light already seen (in gas xenon):

THANK YOU FOR LISTENING

xe-pr@lngs.infn.it www.xenonexperiment.org twitter.com/XENONexperiment facebook.com/XENONexperiment instagram.com/xenon_experiment