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 CERN

find new  
fundamental particles

my goal:

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.12.204
https://home.cern/resources/image/accelerators/lhc-images-gallery
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 CERN

Most recent machine to 
accomplish that goal: 

the Large Hadron Collider

🍾

Higgs discovery, 2012

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.12.204
https://home.cern/resources/image/accelerators/lhc-images-gallery
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now
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Run 1 ➞ Run 2 Run 2 ➞ Run 3

Luminosity x5
Energy +60%

Luminosity x1
Energy +4%

Run 3 ➞ Run 4+

Luminosity x10
Energy +4%

The LHC

Run 4+Run 1 Run 2 Run 3

LHC HL-LHC
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7 TeV 8 TeV
13 TeV 13.5 TeV 14 TeV
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if σbkg is driven by systematics that are 
a fixed fraction of the total background 

σbkg ∝ luminosity, and more data  
doesn’t give more sensitivity

20% systematic 
uncertainty

The Worst Case

now
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The Medium Case
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if σbkg is driven by statistical uncertainty 

σbkg  ∝ √(luminosity), and sensitivity increases as 
roughly the square root of luminosity
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The Best Case

9

if the standard model background is tiny 

then it’s only a question of producing and 
reconstructing your signal, and sensitivity 
is proportional to luminosity
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rare events, 
tiny background

now
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The Best Case

10

if the standard model background is tiny 

then it’s only a question of producing and 
reconstructing your signal, and sensitivity 
is proportional to luminosity
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The Best Case
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exciting is rare stuff with small 

backgrounds
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The Best Case
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OR 
stuff that’s really hard to 

reconstruct  
➞ effectively “rare”
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The Best Case
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“evidence for”

“discovery”
As we move forward with the LHC 

the physics that continues to be most 
exciting is rare stuff with small 

backgrounds

now

OR 
stuff that’s really hard to 

reconstruct  
➞ effectively “rare”

OR 
stuff we haven’t 

looked for at all yet
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LHC experiments are huge

not well motivated

 or really hard

searched for many things

only things left are…

Nearly 10K people working 
on ATLAS and CMS

https://cds.cern.ch/record/2654110
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The ATLAS Detector an overview

24 meters

1.7 meters
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The ATLAS Detector an overview
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Charged particles leave tracks 
and we can get precise 
position measurements 

Magnetic field means we 
can also measure momentum 

Tracker
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The ATLAS Detector an overview

17

Stops particles and measures 
the energy deposited  

Calorimeter
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The ATLAS Detector an overview
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Muons aren’t stopped by 
the calorimeter 

Muon system provides 
signatures similar to the 

tracker, but with very little 
background 

Muon System
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The ATLAS Detector an overview

19

Muon System

Calorimeter

Tracker Layers of complimentary 
particle detection 

Designed so we can 
identify a particle  

traveling through all of them
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The ATLAS Detector an overview
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So we can tell an  
electron from a muon 

same inner detector tracks 
electron leaves a large deposit 

in the calorimeter 
muon comes with a track  

in the muon system
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The ATLAS Detector an overview
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An electron and a photon 
look the same in the 

calorimeter, but only the 
electron leaves a track in  

the tracker
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The ATLAS Detector an overview
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Success of particle ID is dependent 
on two assumptions 

 
your particles start at the center 

of the detector and travel out 

the particles you detect are  
standard model particles
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The ATLAS Detector an overview
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Typically true!

all this happens in  
~ 10-25 seconds

detector only ever sees  
the electrons from the Z decay 

reconstruct the Z from their properties

Success of particle ID is dependent 
on two assumptions 

 
your particles start at the center 

of the detector and travel out 

the particles you detect are  
standard model particles
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B. Shuve

all these particles are  
created at the LHC 
and studied in ATLAS

The standard model is full of “long-lived particles”
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B. Shuve

Stable: lightest particle with  
its quantum numbers

The standard model is full of “long-lived particles”
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B. Shuve

Stable: lightest particle with  
its quantum numbers

Metastable:  
e.g. neutron

The standard model is full of “long-lived particles”

uududd

W

protonneutron

e

νe
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B. Shuve

Stable: lightest particle with  
its quantum numbers

The standard model is full of “long-lived particles”

Metastable:  
highly virtual mediators 
small mass splittings 
small couplings
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B. Shuve

Stable: lightest particle with  
its quantum numbers

Metastable:  
highly virtual mediators 
small mass splittings 
small couplings

Promptly decaying: 
e.g. the Z boson

The standard model is full of “long-lived particles”
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From the experimental point of view…
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B. Shuve
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Any dark matter candidate has to be metastable or stable!

In Supersymmetry…

From hidden sectors…

Right-handed neutrinos…

h A

A

No reason to think there are only Standard 
Model long-lived particles…

Beyond-the-Standard-Model particles  
can be long-lived for the same reasons 
(small mass splittings, small couplings, virtual mediators)
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No reason to think there are only Standard 
Model long-lived particles…

Beyond-the-Standard-Model particles  
can be long-lived for the same reasons 
(small mass splittings, small couplings, virtual mediators)

Happens in all kinds of theories of new physics, but I’ll focus on one: SUPERSYMMETRY 

Tiny Couplings Small Mass Splittings

Gauge Mediated Symmetry Breaking Anomaly Mediated Symmetry Breaking

Virtual Mediators

Split Supersymmetry
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No reason to think there are only Standard 
Model long-lived particles…

Beyond-the-Standard-Model particles  
can be long-lived for the same reasons 
(small mass splittings, small couplings, virtual mediators)

Happens in all kinds of theories of new physics, but I’ll focus on one: SUPERSYMMETRY 

Tiny Couplings Small Mass Splittings

Gauge Mediated Symmetry Breaking Anomaly Mediated Symmetry Breaking

Virtual Mediators

Split Supersymmetry
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No reason to think there are only Standard 
Model long-lived particles…

Beyond-the-Standard-Model particles  
can be long-lived for the same reasons 
(small mass splittings, small couplings, virtual mediators)

Happens in all kinds of theories of new physics, but I’ll focus on one: SUPERSYMMETRY 

Tiny Couplings Small Mass Splittings

Gauge Mediated Symmetry Breaking Anomaly Mediated Symmetry Breaking

Virtual Mediators

Split Supersymmetry
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Happens in all kinds of theories of new physics, but I’ll focus on one: SUPERSYMMETRY 

Why we love SUSY Why we don’t love SUSY

Gives a solution to the hierarchy problem 

Gives a dark matter candidate 

Is a particularly elegant mathematical concept 

Gives rise to many different particles with  
complex and ~unpredictable mass spectra 

(keeps us employed for decades)
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Happens in all kinds of theories of new physics, but I’ll focus on one: SUPERSYMMETRY 

Why we love SUSY Why we don’t love SUSY

We thought it would be easier to find
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200 GeV particle 
energy: 500 GeV 
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What makes lifetime hard?

Varying lifetime creates completely different 
signatures in our detector 

Many of those variations include signatures 
we didn’t design detectors to reconstruct 

Must have dedicated searches for each  
signature — adds a new dimension to the  
types of searches we need to cover all  
scenarios!
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Stable: 
Passes through the full detector 
— need to be able to differentiate  
this from a standard model particle 

Metastable: 
Decays somewhere inside the detector  
— need different algorithms 
depending on where it decays 
— deal with different backgrounds 

Two main scenarios
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Stable: 
Passes through the full detector 
— need to be able to differentiate  
this from a standard model particle 

Metastable: 
Decays somewhere inside the detector  
— need different algorithms 
depending on where it decays 
— deal with different backgrounds 

Unusual signatures require dedicated 
(often time consuming) techniques

Two main scenarios
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Problem:
By the time you can do this special 

reconstruction,  ATLAS has already thrown 
away more than 99.99% of collisions 

Final decision on what 
to keep is made in 

around 250 ms

How do we decide if 
this event is worth  

keeping?

(image of an event with analysis-level “offline” reconstruction)

ATLAS public event displays

The ATLAS Trigger

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics
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Level 1 trigger decisions are made with rough  
calorimeter and muon information

High Level Trigger uses full precision 
information in small regions

40 MHz → 
100 kHz

100 kHz → 
1 kHz

Event @ L1 Event @ HLT

hardware

software
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Event @ L1 Event @ HLT

Level 1 trigger decisions are made with rough  
calorimeter and muon information

High Level Trigger uses full precision 
information in small regions

only available in 
small slices

tracking:  
best measurement of 

particle lifetime
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ATLAS searches for long-lived particles

hadron formed with a 
metastable SUSY particle

LLP Summary Plots

g~

q
q

q

g~

q

q
_

an example of success  
R-hadrons

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/ATLAS_SUSY_LLP/ATLAS_SUSY_LLP.png
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ATLAS searches for long-lived particles

Prompt Search

original search 
required decay products   
to have prompt tracks 

modified to increase acceptance

triggers on missing energy 
from neutralino

an example of success  
R-hadrons
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ATLAS searches for long-lived particles

Displaced Vertices

triggers on missing energy 
from neutralino

reconstructs displaced 
vertices with dedicated 

tracking algorithms

an example of success  
R-hadrons



T. Holmes, University of Tennessee 45

ATLAS searches for long-lived particles

dE/dx

triggers on missing energy 
from neutralino 

(works less well when stable)

calculate energy deposition 
in silicon sensors to find  

high-mass particles

an example of success  
R-hadrons
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ATLAS searches for long-lived particles

Many different dedicated searches for R-hadrons 
Together they cover the full lifetime range 

Each signature has different strategy, specialized 
techniques 

⊳ modified track requirements 
⊳ specialized track and vertex reconstruction 
⊳ dE/dx calculation  

None use a trigger related to long lifetimes

But in this case, we’ve 
done great
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Uncovered territory

Still models that hadn’t been looked at, like 
For intermediate lifetimes, tightest limit from OPAL 
(15 years ago, a fraction of the LHC energy)  
 

OPAL paper, ATLAS Slepton & Chargino Production

One we don’t have limits 
is because it’s so rare

If they exist, the LHC would have produced in Run 2: 

500 GeV gluinos: 4.7 million 
500 GeV sleptons:  94   

In order to pick out these events, in the  
sea of LHC data, you have to be really 
looking for them! 

Previously we’d only been able to rule  
out these particles at < 90 GeV 

Required a dedicated search to go further

https://arxiv.org/abs/hep-ex/0507048
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-32/
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what I’ve been working on

Displaced leptons — and nothing else! 

 

e or µ

e or µ
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Very displaced leptons means standard 
reconstruction algorithms fail 

Which may sound like it isn’t a big deal, 
but in these huge experiments, those 
algorithms were made by thousands of 
people working to perfect them 

Not easy to re-do as a tiny team! 

hasn’t been done for a 
reason: it’s hard

e or µ

e or µ
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Very displaced leptons means standard 
reconstruction algorithms fail 

Which may sound like it isn’t a big deal, 
but in these huge experiments, those 
algorithms were made by thousands of 
people working to perfect them 

Not easy to re-do as a tiny team! 

First step: Record the data! 
Need special triggers for displaced objects 
➞ no tracking information so much harder 
to pick out from backgrounds

hasn’t been done for a 
reason: it’s hard

e or µ

e or µ
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hasn’t been done for a 
reason: it’s hard

Next step: make sure you can reconstruct your signal 
Able to get good efficiency out to high values of 
displacement 

ATLAS CONF

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-051/
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hasn’t been done for a 
reason: it’s hard

Next step: make sure you can reconstruct your signal 
Able to get good efficiency out to high values of 
displacement 

3rd step: Isolate the signal 
Almost all SM processes end 
up in the first bin. We cut at 
|d0| > 3 mm to remove them. 

ATLAS CONF

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-051/
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hasn’t been done for a 
reason: it’s hard

Next step: make sure you can reconstruct your signal 
Able to get good efficiency out to high values of 
displacement 

3rd step: Isolate the signal 
Almost all SM processes end 
up in the first bin. We cut at 
|d0| > 3 mm to remove them. 

ATLAS CONF

Finally: How do we figure  
out what’s left?

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-051/
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When you have a search with tiny 
backgrounds, it can be more complicated 
than you expect 

Dominant background for µµ 
cosmics 

hasn’t been done for a 
reason: it’s hard

cosmic µ
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Dominant background for µµ 
cosmics 
fake muons 

55

When you have a search with tiny 
backgrounds, it can be more complicated 
than you expect 

hasn’t been done for a 
reason: it’s hard

fake µ
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Dominant background for µµ 
cosmics 
fake muons 
rare standard model processes 

56

When you have a search with tiny 
backgrounds, it can be more complicated 
than you expect 

hasn’t been done for a 
reason: it’s hard

“heavy flavor” µ
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Dominant background for µµ 
cosmics 
fake muons 
rare standard model processes 
material interactions 

57

When you have a search with tiny 
backgrounds, it can be more complicated 
than you expect 

hasn’t been done for a 
reason: it’s hard

material interaction
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Dominant background for µµ 
cosmics 
fake muons 
rare standard model processes 
material interactions 
massive reconstruction failures 

58

When you have a search with tiny 
backgrounds, it can be more complicated 
than you expect 

hasn’t been done for a 
reason: it’s hard

awful cosmics
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This is the kind of logic you go through 
in each channel - ee, µµ, eµ 

Figure out what backgrounds really contribute 
µµ: mismeasured cosmic muons 
ee: photons associated with fake tracks 
eµ: fake leptons and heavy flavor 

Figure out how to estimate these backgrounds 
Can’t use simulation!

estimating backgrounds

electron

muon
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Data-driven approaches designed  
to model each background: 

fakes and heavy flavor: 

take advantage of the uncorrelated nature  
of the two leptons in the event 

cut on the quality of one — it doesn’t  
affect the shape of the other distribution 

both pass = (1st fails, 2nd passes) * (2nd fails, 1st passes) 
                                            both fail 

estimating backgrounds

Lepton 2 χ2 < 2

Lepton 1 χ2

Lepton 2 χ2 > 2
______________________________________
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Cosmic estimate follows a similar strategy, 
but is less intuitive 

Reliable ID tracks, but timing means often  
missing information in the MS 

Combined muon has correct measurement,  
but can’t find MS activity to tag 

mismeasured muon is tagged 
well measured muon isn’t 

Quality of muon is independent of probability 
to be tagged (given the same muon quality 
on the opposite side)

estimating backgrounds

tagged muon

untagged muon
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Measure ratio of “good quality” to “poor quality” 
muons in events with one cosmic tag 

Apply that ratio to events with an untagged 
poor quality muon to estimate the background

estimating backgrounds

good quality muon

cosmic-tagged

poor quality muon

(used in signal region)

(missing measurements)

signal region
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The last steps...

Able to reduce our backgrounds to fractions of a event, estimate all backgrounds 
And finally, can look in our signal regions 
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The last steps...

Able to reduce our backgrounds to fractions of a event, estimate all backgrounds 
And finally, can look in our signal regions 

And see… nothing! 
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The last steps...

Able to reduce our backgrounds to fractions of a event, estimate all backgrounds 
And finally, can look in our signal regions 

previous limit 

ATLAS CONF

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-051/
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Run 2 ➞ Run 3

Luminosity x1
Energy +8%

Run 4+Run 1 Run 2 Run 3

LHC HL-LHC

30 fb-1 150 fb-1 300 fb-1 3000 fb-1

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2037

7 TeV 8 TeV
13 TeV 14 TeV 14 TeV

No big jumps opening 
up new territory

How can we gain more sensitivity?
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To improve long-lived searches

must improve the Trigger

For some parameter space that we haven’t yet excluded 
trigger acceptance is as low as 3%! 

When you can’t use tracks, throw away half of your lepton information 

Can’t reject backgrounds as well ➞ have to make your energy thresholds higher 

For our displaced  
lepton search…

electron

muon
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To improve long-lived searches

must improve the Trigger

No big changes to the detector  
➞ can only make software changes 

Working on developing smart strategies to 
quickly produce approximations of these  
long-lived particle track signatures 

what rough information can we add  
that makes a big difference?

what can we do for 
Run 3…

200 GeV particle 
energy: 500 GeV 
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69

To improve long-lived searches

must improve the Trigger

No big changes to the detector  
➞ can only make software changes 

Working on developing smart strategies to 
quickly produce approximations of these  
long-lived particle track signatures 

what rough information can we add  
that makes a big difference?

what can we do for 
Run 3…

200 GeV particle 
energy: 500 GeV 

these changes are only possible in 
software 

still need level 1 triggers that don’t 
know anything about our tracker
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Run 3 ➞ Run 4+

Luminosity x10
Energy +0%

Run 4+Run 1 Run 2 Run 3

LHC HL-LHC

30 fb-1 150 fb-1 300 fb-1 3000 fb-1

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2037

7 TeV 8 TeV
13 TeV 14 TeV 14 TeV

Massive upgrades to the 
ATLAS and CMS detectors

Can we make long-lived particles more than an afterthought?
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Run 4+Run 1 Run 2 Run 3

LHC HL-LHC

30 fb-1 150 fb-1 300 fb-1 3000 fb-1

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2037

7 TeV 8 TeV
13 TeV 14 TeV 14 TeV

Both ATLAS and CMS are working 
on a hardware-based tracker

CMS: L1Track 
ATLAS: HTT
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And on ATLAS, I worked on 
demonstrating that these trackers 

could help us find long-lived particles
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Example of tracking efficiency 
for a hardware tracker

For some signatures, this hardware tracker configuration 
resulted in up to 7x trigger acceptance 
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But it’s not just trackers…

Muon System

Calorimeter

Tracker

Displaced tracking 
Timing information to find  
slow moving heavy particles

Displaced tracking 
Anomalous charge deposits 
Trackless signatures 

Timing information to find  
slow particles, to allow us to  
trace particle trajectories in  
4D (including time!) and reduce  
backgrounds 
 
Fine-grained pointing information 
to look for displaced decays

the tricky thing about long-lived particles 
is how diverse their signatures are
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Timing information to find  
slow particles, to allow us to  
trace particle trajectories in  
4D (including time!) and reduce  
backgrounds 
 
Fine-grained pointing information 
to look for displaced decays
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But it’s not just trackers…

Muon System

Calorimeter

Tracker

Displaced tracking 
Timing information to find  
slow moving heavy particles

Displaced tracking 
Anomalous charge deposits 
Trackless signatures 

the tricky thing about long-lived particles 
is how diverse their signatures are

To have the best chance of finding new 
physics, we have to plan for all the 

shapes it can take
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Important conclusions

⊳ My goal is to inspire people to start thinking about how to make the 
best of Run 3  

⊳ Exciting BSM searches 

⊳ FTK is a new tool available, with straightforward baseline 
performance, but complicated implications for trigger chains, LLP 
applications 

⊳ Need to launch into action now to have things ready for Run 3 

⊳ But if we don’t quite make it… more flexibility, power, and time to 
develop HTT for Run 4
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As we move forward with LHC physics, rare and hard to reconstruct 
processes are the most interesting place to look 

Long-lived particles are often both of these things 

Still lots of room to find well-motivated new physics, if we just 
expand our imagination (and algorithms) beyond the LHC beamspot 

If we act now, can open up new sensitivity in the next generation of 
detectors!

In conclusion…



THANK YOU!


