Bright Needles in a Haystack

Searching for Magnetic Monopoles with the IceCube Detector

- (

A. Burgman

Division for High Energy Physics, Uppsala University

> Final Ph.D. Seminar 2020-10-30

•

Overview

- Magnetic monopoles and IceCube
 - Magnetic monopoles
 - IceCube
 - Magnetic monopole detection with IceCube
- Analysis strategy
 - Including MC samples
- Event selection
 - Step I
 - Step II
- Result
 - Effective area
 - Sensitivity
 - Signal uncertainty
 - Background uncertainty
 - Final result
 - Discovery or upper limit?

•00000000

Magnetic Monopoles

- **Dirac:** Monopole allowed as one end of semi-infinite, infinitesimally thin, solenoid
 - Dirac's quantization condition for electric and magnetic charges
 - ▷ Dirac charge, $g_D \approx \frac{1}{2\alpha} e$
- 't Hooft & Polyakov: Monopole allowed as topological defect between domains of differently directed Higgs field
 - Non-vacuum state of Higgs field in monopole center, requires local energy lump
 - ▷ Size of energy lump (mass) depends on energy scale of symmetry-break → unknown
 - If GUT symmetry breaks directly into EM: $m_{MM} \sim 10^{14} \text{ GeV to} 10^{17} \text{ GeV}$
 - If intermediate symmetry breaks into EM: $m_{MM} \sim 10^5 \,\text{GeV} \,\text{to} 10^{13} \,\text{GeV}$

A. Burgman

Current Magnetic Monopole Population

Magnetic monopoles ('t Hooft-Polyakov) would form during the symmetry-break that yields the electromagnetic U(1) gauge group

Formation between symmetry-break = domains	Far betwee adjacent monopoles	en Fev ⇒ lar s ab	w annihilations, ge fraction still undant
Precise time of symmetr	y-break		-/
depends on energy scale	of break \Rightarrow	Unknown current	
Large spatial expansion around this time	\Rightarrow	abundance	

Extraterrestrial magnetic fields accelerate monopoles to $\lesssim 10^{16}$ GeV

Large portion of mass range allowed to be relativistic, even ultrarelativistic

A. Burgman

 \Rightarrow

IceCube

General purpose neutrino detector

- Neutrino astronomy
- Neutrino oscillations

- Dark matter (direct/indirect)
- Exotics (NSI, sterile, monopoles)

Constituent Arrays

- main in-ice array
- ▷ DeepCore
 - denser instrumentation
 - Iowers E-threshold
- IceTop
 - surface array
 - cosmic ray detector

Instrumentation – DOMs

(Digital Optical Modules)

- 5160 in-ice DOMs
 (main array + DeepCore)
- ▷ 324 surface DOMs (IceTop)

A. Burgman

IceCube Ice-Model

Ice-Model Governs photon from production to detection (or absorption)

DOM efficiency The probability that a photon hitting the DOM surface is detected by the DOM

DOM angular acceptance The relative sensitivity of a DOM depending on the incident zenith angle of the photon

Scattering and absorption The characteristic scattering and absorption lengths of optical light in the ice

000000000

IceCube – Typical Events

Magnetic Monopole Light Production

Monopole light yield

A. Burgman

Magnetic Monopole Light Production

Cherenkov Light

Speed above Cherenkov Threshold, β_{CT} $\beta_{CT} = \frac{1}{n_{\lambda}}$ for $n_{\lambda} = 1.34$: $\beta_{CT} \approx 0.746$ Produced in semi-forward direction, with angle θ_c $\cos\left(\theta_{C}\right) = \frac{1}{n_{\lambda}\beta}$ for $n_{\lambda} = 1.34, \beta = 1$ $\theta_{c} \approx 41.7^{\circ}$

A. Burgman

Magnetic Monopole Light Production

Monopole light yield

Frank-Tamm equation for monopoles

- \triangleright increasing with β
- homogeneous
- larger than for electric charges by factor

$$\left(\frac{gn_{\lambda}}{e}\right)^{2}$$
for $g = g_{D}, n_{\lambda} = 1.34$
$$\left(\frac{gn_{\lambda}}{e}\right)^{2} \approx 8430$$

A. Burgman

Monopole Signatures

Relativistic Monopole Event Characteristics

- ⊳ Bright
- ▷ Subluminal speed
- Track-like
- ▷ Non-starting/-stopping
- \triangleright Non-stochastic

Monopole Signatures

Monopole Flux Upper Limit Landscape

•0

Analysis Strategy

Step I – Apply EHE Analysis Selection

- IceCube analysis
 - Searching for GZK neutrinos
 - Similar event characteristics
- Objectives
 - Accept bright events
 - Reject atmospheric events

Step II – Custom Selection via BDT

- Train BDT
 - Variables based on monopole event signatures
- ▷ Objective
 - Reject Remaining Neutrinos

Livetime

$8\,yr$ of collected data

A. Burgman

Bright Needles in a Haystack

11 / 42

Analysis

0.

Monte Carlo Data

Background

IceCube central MC production

Energy range

 v_e [10⁵, 10⁸] GeV v_μ [10⁵, 10⁹] GeV v_τ [10⁵, 10⁹] GeV

Assumed Flux

Diffuse muon neutrino analysis, 2017

▷ Single power law

•
$$\phi_{\nu} = 1.01^{+0.26}_{-0.23}$$

• $\gamma_{\nu} = -2.19 \pm 0.10$

$$\Phi_{\nu} = \phi_{\nu} \times \left(\frac{E_{\nu}}{100 \, \text{TeV}}\right)^{-\gamma},$$

A. Burgman

Event Selection

Triggers and Filters

- Trigger the detector to commence data collection
- Quick data sorting based on fast reconstruction

Step I

- Apply EHE Analysis Selection
 - Accept bright events
 - Reject atmospheric events

Step II

- Custom Selection via BDT
 - Variables based on monopole event signatures
 - Reject Remaining Neutrinos

Triggers and Filters

Triggers and Filters Accept events from...

- ▷ any trigger
- ▷ the online EHE filter, where $n_{PE} \ge 10^3$

Step I

► Apply EHE Analysis Selection

- Accept bright events
- Reject atmospheric events

Step II

- ▷ Custom Selection via BDT
 - Variables based on monopole event signatures
 - Reject Remaining Neutrinos

A. Burgman

Step I

Triggers and Filters Accept events from...

- ▷ any trigger
- ▶ the online EHE filter, where $n_{PE} \ge 10^3$

Step I

Apply EHE Analysis Selection

- Accept bright events
- Reject atmospheric events

Step II

- Custom Selection via BDT
 - Variables based on monopole event signatures
 - Reject Remaining Neutrinos

Step I — The Offline EHE Cut

Quick cuts to reduce data volume

Electron Neutrino

150

200

Muon Neutrino

- ▷ Track quality: $\chi^2_{red,EHE} \le 30$
- ▷ Num. photo-electrons: $n_{PF} \le 20\,000$
- ▷ Num. channels: $n_{CH} \le 100$

50

100

 $\chi^2_{red, EHE}$

Magnetic Monopole

Neutrino Total

A. Burgman

10

Event Rate $[t_{IC86,8yr}^{-1}]$

10

Step I – The Track Quality Cut

Cut on brightness, based on track-likeness

$$\log_{10}(n_{PE}) \ge \begin{cases} 4.6 & \text{if} \quad \chi^2_{red, EHE} < 80\\ 4.6 + 0.015 \times (\chi^2_{red, EHE} - 80) & \text{if} \quad 80 \le \chi^2_{red, EHE} < 120\\ 5.2 & \text{if} \quad 120 \le \chi^2_{red, EHE} \end{cases}$$

Monopoles:

Neutrinos:

A. Burgman

Step I – The Muon Bundle Cut

Cut on brightness, based on zenith direction

$$\log_{10}(n_{PE}) \ge \begin{cases} 4.6 & \text{if } \cos(\theta_{zen, EHE}) < 0.06\\ 4.6 + 1.85 \times \sqrt{1 - \left(\frac{\cos(\theta_{zen, EHE}) - 1}{0.94}\right)^2} \\ & \text{if } 0.06 \le \cos(\theta_{zen, EHE}) \end{cases}$$

Monopoles:

Neutrinos:

A. Burgman

Step I — The Surface Veto

Downgoing events should not be detectable at the surface

If
$$\cos(\theta_{zen, EHE}) < 85^{\circ}$$
:
 $\triangleright N_{IT-pulse}(\Delta t) \le 1$
 $\bullet \Delta t = [t_{ca} - 1000 \text{ ns}; t_{ca} + 1500 \text{ ns}]$
 $\bullet t_{ca}$ is the in-ice track closest
approach time to lceTop

Applied as a 10.6 % rate decrease for the $\cos(\theta_{zen,EHE}) < 85^{\circ}$ region to account for random IceTop coincident events.

Step I

Triggers and Filters Accept events from...

- ▷ any trigger
- ▶ the online EHE filter, where $n_{PE} \ge 10^3$

Step I

- Apply EHE Analysis Selection
 - ▶ \gtrsim 40 000 registered photo-electrons required
 - < 0.1 atmospheric events accepted per analysis livetime</p>

Step II

- Custom Selection via BDT
 - Variables based on monopole event signatures
 - Reject Remaining Neutrinos

Step II

Triggers and Filters Accept events from...

- ▷ any trigger
- ▶ the online EHE filter, where $n_{PE} \ge 10^3$

Step I

▷ Apply EHE Analysis Selection

- \gtrsim 40 000 registered photo-electrons required
- ► < 0.1 atmospheric events accepted per analysis livetime

Step II

- Custom Selection via BDT
 - Variables based on monopole event signatures
 - Reject Remaining Neutrinos

Step II – BrightestMedian Reconstruction

1. Clean pulse-map

- Select 10 % brightest DOMs
- Select median position pulses in each selected DOM
- Reject all other DOMs/pulses

2. LineFit (standard IceCube)

- Treats each pulse as an individual measurement of particle position
- Leaves speed as free parameter

A. Burgman

Step II – BrightestMedian Reconstruction

1. Clean pulse-map

- Select 10 % brightest DOMs
- Select median position pulses in each selected DOM
- Reject all other DOMs/pulses

2. LineFit (standard IceCube)

- Treats each pulse as an individual measurement of particle position
- Leaves speed as free parameter

Step II – Monopole Signatures

Reject remaining neutrinos

Variables based on monopole event signatures

24 / 42

Step II – BDT Variables

Signature variables – 6

Brightness

Signature in Step I

Non-stochastic

- Charge-weighted distance between hit and track
- Relative standard deviation of partial energy losses along track

Helper variables - 3

Brightness

 $\triangleright \log_{10}(n_{PE})$

Zenith direction $\triangleright \cos(\theta_{zen,BM})$

Centrality

EWHM of hit time distribution

Hit length-fill-ratio along track

Relative offset of hit-CoG from

Non-starting/-stopping

track mid-point

Subluminal speed

▶ Reco. speed

Track-like +

▷ $d_{C,BM}$

A. Burgman

Step II — BDT Variables Helper variables — Brightness ▷ log₁₀(n_{PE})

Neutrinos brighter than monopoles!

Step II — BDT Variables Signature variables — Track-like + Non-starting/-stopping ▷ Hit length-fill-ratio along track

Step II – Boosted Decision Tree

Mulitvariate data classification tool

- Series of decision trees
 - Trained in sequence
 - Known SG & BG events
- Event boost between trees
 - Misclassified events are boosted before next tree in sequence
- Validation, KS-test
 - Known SG & BG events in validation sample

Overtraining KS test p-value Signal 0.38 Background 0.84

Common IceCube hyper-parameters

- --num-trees 300
- --depth 3
- --beta .7
- --prune-strength 35
- --frac-random-events=0.5

A. Burgman

Step II – Setting BDT Score Cut

Model Rejection Potential

$$\mathsf{MRP} = \frac{\Phi_{90,sens}}{n_{SG}}$$

Minimal MRP

 \Rightarrow

best sensitivity per expected signal event

"

The best value for money per signal event

A. Burgman

Step II – Setting BDT Score Cut

Model Rejection Potential

$$\mathsf{MRP} = \frac{\Phi_{90,sens}}{n_{SG}}$$

Minimal MRP

⇒

best sensitivity per expected signal event

"

The best value for money per signal event

A. Burgman

Step II

Triggers and Filters Accept events from...

- ▷ any trigger
- ▶ the online EHE filter, where $n_{PE} \ge 10^3$

Step I

▷ Apply EHE Analysis Selection

- \gtrsim 40 000 registered photo-electrons required
- ► < 0.1 atmospheric events accepted per analysis livetime

Step II

- Custom Selection via BDT
 - ► SG acceptance 93.5 %
 - BG acceptance 2.65 %

Remaining Flux

Analysis level		n _{SG}	n _{BG}	n _{ve}	$n_{\nu_{\mu}}$	$n_{v_{\tau}}$
Trigger		244	838	146	548	144
EHE filter		178	371	90.1	202	78.2
Step I	Offline EHE	89.9	57.2	23.4	20.0	13.8
	Track quality	64.1	20.4	6.77	9.91	3.72
	Muon bundle	35.5	10.1	4.39	3.83	1.90
	Surface veto	35.5	9.99	4.33	3.78	1.88
Step II		33.2	0.265	0.00302	0.241	0.0209

Reminder – Flux assumptions

- SG Assumed as best upper limit in range
- BG Assumed as diffuse muon neutrino flux result Truncated energy, $E_{\nu} > 10^5$ GeV

Effective Area

The event selection efficiency quantified as the area of an ideal detector recording with 100 % efficiency.

Sensitivity

Upper Limit

$$\Phi_{90}^{MM} = \Phi_{0}^{MM} imes rac{\mu_{90} (n_{BG}, n_{OB})}{n_{SG}}$$

 $\mu_{90}(n_{BG}, n_{OB})$ is the numerical upper limit, from Feldman & Cousins

Sensitivity

The average upper limit that can be expected to be set assuming a given background rate, n_{BG}

$$\overline{\Phi}_{90}^{MM} = \Phi_0^{MM} \times \frac{\overline{\mu}_{90}(n_{BG})}{n_{SG}}$$
$$\overline{\mu}_{90}(n_{BG}) = \sum_{n_{OB}=0}^{\infty} \left(\mu_{90}(n_{OB}, n_{BG}) \times \frac{e^{-n_{BG}}(n_{BG})^{n_{OB}}}{n_{OB}!} \right)$$

Bright Needles in a Haystack

Sensitivity

The average upper limit that can be expected to be set assuming a given background rate, n_{BG}

Sensitivity

The average upper limit that can be expected to be set assuming a given background rate, n_{BG}

$$\overline{\Phi}_{90}^{MM} = \Phi_{0}^{MM} \times \frac{\overline{\mu}_{90}(n_{BG})}{n_{SG}}, \quad \overline{\mu}_{90}(n_{BG}) = \sum_{n_{OB}=0}^{\infty} \left(\mu_{90}(n_{OB}, n_{BG}) \times \frac{e^{-n_{BG}}(n_{BG})^{n_{OB}}}{n_{OB}!} \right)$$

••• BAIKAL 5 yr •• IceCube-40 1 yr •• IceCube-86 8 yr, sens.
ANTARES 5 yr •• IceCube-86 1 yr •• IceCube-86 1 yr •• IceCube-86 8 yr, sens.
10⁻¹⁵ •• BAIKAL 5 yr •• IceCube-86 1 yr •• IceCube-86 8 yr, sens.
 $\overline{\mu}_{2}^{MM} = 0.265$
Sensitivity
 $\overline{\Phi}_{90}^{MM} = 2.78 \times 10^{-19}$
 $\operatorname{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}$

Bright Needles in a Haystack

Resu	lt

SG Efficiency Uncertainty - Systematics Studies

Baseline

 4×10^5 MC signal events

Systematics 1×10^5 MC signal events for each set

Ice-model variations:

DOM Efficiency

- ► DOM Efficiency +10 %
- ► DOM Efficiency -10 %

Scattering & Absorption

- ► Scattering +5 %, Absorption +5 %
- ► Scattering +5 %, Absorption -5 %
- ► Scattering -5 %, Absorption +5 %
- ► Scattering -5 %, Absorption -5 %

DOM Angular Sensitivity

- ► 49 (p₀,p₁) sets available for systematics studies
- Choosing sets 5, 9, 10, 14 (framing distribution)

000000

SG Efficiency Uncertainty - Systematics Studies

000000

SG Efficiency Uncertainty - Systematics Studies

- Picking largest
 A_{eff} diff. as the uncertainty in each category
- Syst. uncertainty quadratic sum: 8.4 %

A. Burgman

000000

SG Efficiency Uncertainty – Systematics Studies

- Picking largest
 A_{eff} diff. as the uncertainty in each category
- Syst. uncertainty quadratic sum: 8.4 %

Statistical uncertainty $\sim 0.5\% \leftarrow$ negligible

00000

BG Uncertainty and Alternative Astrophysical Fluxes

Assumed Flux

Diffuse muon neutrino analysis, 2017

▷
$$\phi = 1.01^{+0.26}_{-0.23}$$

▷ $\gamma = -2.19 \pm 0.10$

Large uncertainty from error bands

Alternative Fluxes Diffuse muon neutrino analysis, 2019

$$\phi = 1.44^{+0.25}_{-0.24} \phi = -2.28^{+0.09}_{-0.08}$$

High energy starting events analysis, 2019

$$\phi = 2.15^{+0.49}_{-0.15} \gamma = -2.89^{+0.19}_{-0.20}$$

Flux	n _{Step I}	n _{Step II}
$\Phi^{2017}_{DIF-\nu_{u}}$	$9.99^{+10.3}_{-5.13}$	$0.265^{+0.265}_{-0.135}$
$\Phi^{2019}_{DIF-\nu_{\mu}}$	$9.41^{+7.32}_{-3.93}$	$0.251^{+0.192}_{-0.105}$
Φ_{HESE}^{2019}	$1.14^{+1.74}_{-0.618}$	$0.0288^{+0.0463}_{-0.0158}$

000000

Experimental Event Rates

Analysis level		n _{OB}	n _{SG}	n _{BG}
EHE filter		1.63×10^{8}	178	371
Step I	Online EHE	3.16×10^4	89.9	57.2
	Track quality	8.46×10^{3}	64.1	20.4
	Muon bundle	3	35.5	10.1
	Surface veto	3	35.5	9.99
Step II		0	33.2	0.265

Reminder – Flux assumptions

- SG Assumed as best upper limit in range
- BG Assumed as diffuse muon neutrino flux result Truncated energy, $E_{\gamma} > 10^5$ GeV

000000

Experimental Events - Accepted at Step I

000000

Experimental Events - Accepted at Step II

000000

Upper Limit

$$\Phi_{90}^{MM} = \Phi_{0}^{MM} \times \frac{\mu_{90} (n_{BG}, n_{OB})}{n_{SG}}$$

 n_{BG} compatible with zero,

using $n_{BG} = 0$ gives most conservative result

A. Burgman

000000

Upper Limit

$$\Phi_{90}^{MM} = \Phi_{0}^{MM} \times \frac{\mu_{90}(n_{BG}, n_{OB})}{n_{SG}}$$

 n_{BG} compatible with zero,

using $n_{BG} = 0$ gives most conservative result

Concluding Remarks

Thank you