

JGU

High-level layout and tentative performance of the X-ray source

Vitaliy Goryashko, Anatoliy Opanasenko, Kevin Pepitone, Akira Miyazaki, Peter Salen, Zoltan Tibai, Roger Ruber, Gerd Schönhense, Hermann Durr

SAC meeting, Uppsala

Outline

- Design goals and strategies
- Conceptual layout of the X-ray source
- Performance of the X-ray source

High-level design goals and strategy

Design goals:

- 1-4 keV; 10²-10⁴ ph/shot & photon flux > 10⁷ ph/sec
- Evenly spaced photon pulses at 1-100 kHz
- Sub-ps X-ray pulses synchronized with optical laser pulses
- Compact solution (preferably fits into 25 meters)

Design strategy

- Superconducting (SC) accelerator (~10 MeV) in CW mode
- Normal conducting CW RF gun (some analogy with LCLS-II)
- IR laser undulator
- Phase I: single-pass incoherent undulator (Compton) X-ray source
- Phase II: coherent undulator X-ray source

Our inhouse strength/base

- SC accelerator technology
- RF power sources
- Competence in beam physics, FEL physics, X-ray beamlines

Technical challenges and strategies

Design challenges:

- Beam emittance at the nm scale
- Beam bunching at the nanometer (nm) scale [for coherent X-rays]
- Beam focusing of laser and electron beams at the um scale
- Spatial overlap and temporal synchronization

Design strategies for ultralow emittance:

- Blow-out beam generation
- Collimation of a high-emittance beam
- Field emitters

Design strategies for beam structuring (nanobunching):

- Beam structuring via electron diffraction + emittance exchange
- Beam structuring using plasmonic cathodes + emittance exchange
- Modulated beam from a cold electron source

We started the design with a more general case of the coherent source to make sure that it can be accommodated in the Phase II.

Conceptual layout of the X-ray source

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end stations	12. optimization

Solid understanding of the physics. Elaborated simulation models.

Good understanding of the physics. Toy models.

Planned

	CW RF gun	3 rd harmonic cavity	SC booster	Beam nano- patterning	SC linac	Emittance exchange	Laser undulator	De- accelerat ing cavity	Beam dump	X-ray beamline	
	0.4		3.0		6-14			< 10		Beam energy (Me	eV)
0	1.5	2	3	5	7	12	13	14	15	Distance (m)	25

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

- Linear space-charge force of a uniform ellipsoidal electron bunch.
- A flat charged disk can blow out into a fully fledged ellipsoidal bunch, O.J. Luiten, PRL 094802 (2004).

$$\rho(r,z) = \sigma_0 \sqrt{1 - (r/R)^2} \delta(z)$$

• Density is limited by the image charge.

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end	12.
CW RF gun	optics	stations	optimization
	1000 -	ما	itial boom.

- Initial beam:
- 50 um
- 100 fs
- 160 fC
- 20 nm emittance
- half-circular density distribution

CW, ~ 25 kW 420 keV

325 MHz

e-beam

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch	6. acceleration to 10 MeV	7. emittance	8. laser
optics		exchange	undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

Longitudinal position in the bunch

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch	6. acceleration to 10 MeV	7. emittance	8. laser
optics		exchange	undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

1.3 GHz, SC CW, $\sim 1 \text{ W RF}$ 3 MeV

z/D

control to 3 MeV	diffraction
eleration 7. emittan MeV exchange	ce 8. laser undulator
ray 11. end	12.
	eleration MeV ray 11. end stations

- Availability of strong local expertise
 in quantum simulations of electron
 diffractions on various structures
- Simulations are computationally heavy (energy spread, beam emittance, multiple scattering)
- When the modelling of beam dynamics is more solid, accurate quantum simulations of e-diffraction will be performed

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch	6. acceleration to 10 MeV	7. emittance	8. laser
optics		exchange	undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization
"Perforated" crystal	4f imaging in Lens (x, y) Fourier plane	h optics Lens y Mask $p(x,y)$ f f hted beam is blocked in	n the Fourier plane. 11

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

SC main accelerator

1.3 GHz, SC CW, ~ 100 W, 7-14 MeV

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

E. Nanni, and W. S. Graves. "Aberration corrected emittance exchange." PRAB (2015): 084401.

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

Thin-disk Yb:YAG lasers from TRUMPF at 1 um:

Off-the-shelf: 0.75 kW, 20-100 kHz, up to 150 mJ, < 1 ps Demonstrated: 1.9 kW, 20 kHz, up to 95 mJ, < 1 ps On special order: 5 kW, 100 kHz, 50 mJ, < 1 ps (M2 ?)

Tom Metzger, TRUMPF Scientific Lasers

1. ellipsoidal	2. energy	3. acceleration to 3 MeV	4. electron
e-bunches	chirp control		diffraction
5. e-bunch	6. acceleration to 10 MeV	7. emittance	8. laser
optics		exchange	undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

L. Assoufid et al. Optics and Photonics News (2015).

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch	6. acceleration to 10 MeV	7. emittance	8. laser
optics		exchange	undulator
9. FEL lasing	10. X-ray	11. end	12.
	optics	stations	optimization

- The photon beam divergence is large
- We have experience with X-ray optics design
- Current solution is a KB set and a doublecrystal monochromator

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator
9. FEL lasing	10. X-ray	11. end stations	12.

Momentum Microscope. Gerd Schönhense

1. ellipsoidal e-bunches	2. energy chirp control	3. acceleration to 3 MeV	4. electron diffraction	
5. e-bunch optics	6. acceleration to 10 MeV	7. emittance exchange	8. laser undulator	
9. FEL lasing	10. X-ray optics	11. end stations	12. optimization	
Optics: RAY for optimization				
Beam dynamics: ASTRA/GPT				
	X-ray Simple	s: ex	18	

X-ray source performance

Laser undulator options

Thin-disk technology, for example, Trumpf Dira: 1 um, < ps, up to ~ 0.1 J, high rep. rate and high power.

BNL (monster) CO_2 laser: 10 um, ~ 5 ps, ~ 1 J, low rep. rate.

Comments on calculation of Compton radiation

- Earliest publications on Compton sources date back to the 60s [first experiment: C. Bemporad et al. Phys. Rev. 21 (1965); detailed theory: R. Coisson, Phys. Rev. A 20, 524 (1979)].
- Over 100 theoretical studies but no closed-form analytical solution taking into account all broadening effects.
- Work by W. Brown and F. Hartemann, PRST AB **7**, 060703 (2004) is probably the most detailed analysis in the literature.
- In our work, we estimate the total number of emitted X-ray photons using the model of spontaneous undulator radiation and calculate the spectrum broadening from Hartemann's publication.
- The intrinsic bandwidth is ~0.3% ($N_u \approx 300$).
- The ponderomotive broadening due to the varying amplitude of the laser pulse is assumed to be compensated for by the proper chirp of the pulse.
- The spatial profile is assumed to be flattened $\Delta E(r = \sigma_b)/E(0) < 8\%$.
- The broadening effect from the electron and photon beam divergence are calculated from Hartemann's publication, Eq. (63), and amounts to 0.42%.
- Simulations with Simplex are done for cross-checking.

Target parameters of incoherent X-ray source

ron beam ameters	electron bunch charge	Q _b	16	pC
	number of electrons	N _b	10 ⁸	
	bunch energy	Ub	7.6	MeV
	relative energy spread	δ_{γ}	10 ⁻⁴	
	rms bunch duration	$ au_b$	0.25	ps
ect	bunch emittance	ϵ_n	0.1	mm <u>mrad</u>
	rms bunch size	σ_b	3.5	um
	geometrical beta-function	β_g	2	mm
r beam meters	laser wavelength	λ_L	1.0	um
	rms laser pulse duration	τ_L	1	ps
	rms laser beam size	σ_L	4.9	um
	Rayleigh length	Z _R	0.3	mm
Ise	laser pulse energy	\mathcal{E}_L	50	mI
ba I	undulator parameter	${\cal K}$	0.14	
	laser rep. rate	f_L	100	kHz
X-ray yield	radiation wavelength	λ_r	1	nm
	rms X-ray pulse duration	$ au_X$	0.25	ps
	rms X-ray beam size	σ_X	3.5	um
	rms X-ray beam divergence	$\sigma_{X'}$	0.4	mrad
	X-ray photons/shot/0.01%BW	N _{ph,0.01%}	780	
	X-ray photons/second/0.01%BW	$\mathcal{F}_{0.01\%}$	7.8 107	

Quick test of the RF gun performance

Transverse Emittance

Beam Size

Coherent X-ray source

Self-Amplifier Coherent Spontaneous Emission (SACSE)

 $\mathcal{E}_{rad}^{sat} \approx \varrho U_b Q_B$ radiated energy

Coherent **S**pontaneous **E**mission

Classical FEL vs compact FEL:

$$\sigma_b = 10$$
 um, $\lambda_w = 10$ mm,
 $\lambda_r = 1$ nm, $N_w = 100$
 $N_F = 0.63$, D = 0.23

 $\sigma_b = 1 \text{ um}, \ \lambda_w = 1 \text{ um},$ $\lambda_r = 1 \text{ nm}, N_w = 100$ $N_F = 63, D = 0.0025$

Coherent emission is very weak for a short period undulator.

 $\mathcal{E}_{rad} = D(N_F)\mathcal{E}_0$ - emitted energy

Energy emitted by an ultrathin electron beam:

$$\mathcal{E}_0 = \left[\frac{\pi^2 a_{\rm in}^2}{2} \frac{I}{\gamma I_\alpha} \frac{K^2}{2 + K^2} A_{\rm jj}^2 N_w\right] U_b Q_b$$

 $D(N_F)$ is the diffraction function with

E.L. Saldin et al. NIMA 539 (2005).

Coherent X-ray source

n beam ieters	electron bunch charge	Q_b	0.8	pC
	number of electrons	N _b	5 10 ⁶	
	bunch energy	U _b	7.6	MeV
	relative energy spread	δ_{γ}	10 ⁻⁴	
ran	rms bunch duration	$ au_b$	50	fs
Elect	bunch emittance	ϵ_n	0.03	mm <u>mrad</u>
	rms bunch size	σ_b	2	um
	geometrical beta-function	β_g	2	mm
r beam meters	laser wavelength	λ_L	1.0	um
	rms laser pulse duration	$ au_L$	1000	fs
	rms laser beam size	σ_L	4.9	um
	Rayleigh length	Z _R	0.3	mm
ase ara	laser pulse energy	\mathcal{E}_L	50	ml
Ď Ľ	undulator parameter	${\cal K}$	0.14	
	laser rep. rate	f_L	100	kHz
X-ray yield	radiation wavelength	λ_r	1	nm
	X-ray pulse duration	$ au_X$	50	fs
	rms X-ray beam size	σ_X	1.5	um
	rms X-ray beam divergence	$\sigma_{X'}$	75	urad
	X-ray photons/shot/0.01%BW	N _{ph,0.01%}	3 104	
	X-ray photons/second/0.01%BW	$\mathcal{F}_{0.01\%}$	3 109	

Summary

- Recent development of very high-power ps lasers opened the door to high repetition rate, high-flux compact X-ray sources
- We envision a two-stage approach based on
 - (i) an incoherent X-ray source based on spontaneous undulator radiation from a laser undulator
 - (ii) a coherent source employing self-amplified coherent spontaneous emission from a pre-bunched electron beam
- The design of a SC accelerator is underway with the main focus on an emittance exchange line at the moment
- Design of an optical system is the next big goal.

Questions/Comments?

Back-up slides

Carbone dioxide (CO2) lasers

There are only two groups in the world working on short-pulse CO2 lasers:

- Brookhaven Lab, US
- Neptune Lab, UCLA, US

CO2 laser

- One of the first gas lasers in the world
- High pump efficiency ~20%
- Operated at around 10 um

Normalized Gain

- CW power up to 100 kW
- Widely used in industry for cutting and welding
- Very narrow transition line: typical pulse duration ~ ns
- To shorten the pulse duration, the gas must be pressurized to a few atmospheres to broaden the emission line

CO₂ Gain Spectrum

CO2 lasers at Brookhaven

Chirped-pulse amplification in a CO₂ laser

MIKHAIL N. POLYANSKIY,* MARCUS BABZIEN, AND IGOR V. POGORELSKY

Short pulses are possible but the rep rate is low (~10 Hz) but laser output has a quasi-burst structure.

CO2 laser as wiggler

- ATF CO2 laser generates 5J / 3ps /~0.5% BW (upgrade pass to ~10-15J /~2% BW)
- UCLA Laser 150J in train of 3 3ps pulses
- Commercial Sopra laser is capable of ~10J /~2%BW at ~100Hz.

Vitaly Yakimenko "Practical solutions for compact X ray FEL laser based undulator"