Electron density modulation via electron diffraction

Peter Salén

Electron diffraction

Bragg's law: $n\lambda = 2d_{hkl} \sin\theta$

Malin et al. THPAB088, IPAC2017

Lattice planes have different orientation (hkl), and d_{hkl} Can orient crystal to maximize specific Bragg peak (hkl)

Producing transverse electron density modulation

Diffraction only at thick grating sections ->

Non-diffracted electrons have the same transverse pattern as grating.

Select the non-diffracted beam with an aperture and make an image.

Need sufficiently large deviation angle, 2θ , of the diffracted beam compared with the e-beam angular spread, σ' , in order to block it.

Required electron-beam emittance:

Assume $\sigma' < 0.1 \times 2\theta$

 $2\theta = 1.1 \text{ mrad}$ for the (111) Bragg peak in a Si crystal for E=3 MeV.

-> <u>required emittance</u> $\epsilon = \sigma \times \sigma' = 300^{-6} \times (0.1 \times 2\theta) = 34$ nm rad for a beam of $\sigma = 300$ μm width.

Graves et al. Arxiv:1906.01525 (2019)

Optimizing the density modulation

- Choose grating thickness that maximizes the number of diffracted electrons in thick sections and minimizes in thin sections
- Align crystal to satisfy Bragg's law
- Thin crystals (~100 nm) to avoid e.g. multiple scattering and inelastic scattering
- Small emittance of electron beam desired
 95% diffracted electrons demonstrated for 200 nm thick Si crystal

Graves et al. Arxiv:1906.01⁵25 (2019)