Laser undulators

Peter Salén, Akira Miyazaki, Vitaliy Goryashko

Laser undulators

FEL efficiency described by ρ

Laser E-field $K = e E_{II} \lambda_{II} / (2 \pi m_e c^2)$

Desired laser properties for obtaining a high K value

- high pulse energy (100 mJ)
- small waist (10 um)
- short pulse (1 ps)
- (long wavelength) balanced against electron energy

We aim for ~100 kHz rep. rate

high-power laser

Powerful lasers

Thin-disk technology

www.trumpf.com

Powerful lasers

Trumpf, Dira 1000-5: <u>1 kW, 200 mJ, 500 fs, λ=1 μm, M²<1.4</u>

 Dira Series: Regen. amplifier 200mJ; 1kHz; <1ps (standard) 500W; 6-100kHz; <1ps (standard) 1-2kW; 5-100 kHz; <1ps (standard – new: 500fs // 400mJ)

Rapid development towards higher powers. We assume 50 mJ at 100 kHz in simulations. 4

Summary

- High power laser necessary for efficient laser undulator
- Thin-disk laser technology offers promising output parameters for a laser undulator at 100 kHz rep. rate.
- We have also looked at enhancement cavities as a way to increase laser power. They can produce >100 kW average power but the ~100 MHz rep. rate associated with them is not compatible with our target rep. rate of 100 kHz.

Extra slides

High laser average power using enhancement cavity

Δs

Overlap incoming pulses with the pulse in the cavity -> build up of energy.

 $2L_{cav} = \lambda_{RF} = 90 \text{ cm} \rightarrow 330 \text{ MHz}$ rep. rate

Laser input power ~100 W -> high intra-cavity average power ~600 kW Favier, Proc. of SPIE, 10387 (2017)

But MHz rep. rate, limited pulse energy (mJ) and quite large waist (>20 μ m) -> not perfect as a laser undulator but ok for ICS

High pulse energy using burst mode enhancement cavity

Follow development of enhancement cavities, but **the high power thin-disk lasers are presently the best choice for laser undulators**, producing high pulse energies at 100 kHz