
johannes GUTENBERG UNIVERSITÄT MAINz

Future work on the X -ray source

Vitaliy Goryashko on behalf of FREIA \& Z. Tibai \& A. Opanasenko

SAC meeting, Uppsala

Future work

Strategic actions:

- Procure a 100 keV DC gun and a fs laser
- Hire a laser specialist
- Build a test stand for beam dynamics studies

Theoretical work:

- Complete the model of the emittance exchange line
- Optimize electron optics for the nominal charge (16 and 1.6 pC)
- Investigate the regime of small-period structuring of the bunch
- Design the optical system (will answer many questions)
- Quantum simulations of electron diffraction on the crystal

Experimental work

- Get experience with low-emittance electron bunches
- Fabrication of a perforated crystal for diffraction
- Formation of transversely-structured electron bunches

Comment on the longitudinal phase space

Correct bunch distribution from Zoltan and Kevin

Design of Compton source: idealized case

$$
N_{\mathrm{X}-\mathrm{ray}} \approx N_{e} \pi \alpha \frac{\mathcal{K}^{2}}{\left(1+\mathcal{K}^{2}\right)} \approx N_{e} \pi \alpha \mathcal{K}^{2}
$$

Number of X-ray photons into the central cone for a zeroemittance electron beam and

$$
\mathcal{K}^{2}=\frac{2 r_{e} I_{L}}{\pi m c^{3}} \lambda_{L}^{2}
$$ a uniform laser beam

Design of Compton source: realistic case

$$
N_{\mathrm{X}-\mathrm{ray}} \approx N_{e} \pi \alpha \mathcal{K}^{2} \frac{\mathrm{BW}}{\Delta \omega / \omega} \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{L}^{2}}} \quad \mathcal{K}^{2}=\frac{2 r_{e} I_{L}}{\pi m c^{3}} \lambda_{L}^{2}
$$

$$
\begin{aligned}
& \Delta \frac{\Delta \omega}{\omega}=\sqrt{\frac{1}{N_{u}^{2}}+\frac{\gamma^{4} \Delta \theta_{e}^{4}}{4}+\left(\frac{\Delta \theta_{e}^{2}+\Delta \theta_{L}^{2}}{8}\right)^{2}+4 \frac{\Delta \gamma^{2}}{\gamma^{2}}+\frac{\Delta \omega_{\mathrm{pon}}^{2}}{\omega^{2}}} \\
& \text { Intrinsic } \\
& \text { laser BW }
\end{aligned} \begin{aligned}
& \text { broadening } \\
& \text { from e-beam } \\
& \text { divergence }
\end{aligned} \begin{aligned}
& \text { broadening } \\
& \text { from laser beam } \\
& \text { divergence }
\end{aligned} \begin{aligned}
& \text { broadening } \begin{array}{l}
\text { from e-beam } \\
\text { energy spread }
\end{array}
\end{aligned}
$$

- Maximize \mathcal{K}
- Balance different contributions to $\Delta \omega / \omega$ to minimize broadening
- Maximize the number of electrons N_{e} (constrained by the laser pulse volume and ponderomotive broadening)

Comment on a higher charge operation

$$
N_{\mathrm{X}-\mathrm{ray}} \approx N_{e} \pi \alpha \mathcal{K}^{2} \frac{\mathrm{BW}}{\Delta \omega / \omega} \frac{1}{1+\frac{\sigma_{b}^{2}}{\sigma_{L}^{2}}} \quad \mathcal{K}^{2}=\frac{2 r_{e} I_{L}}{\pi m c^{3}} \lambda_{L}^{2}
$$

- Number of electrons $N_{e} \propto \sigma_{0}^{2}$
- Thermal emittance $\varepsilon_{t} \propto \sigma_{0}$
- Normalized emittance after the gun $\varepsilon_{n} \propto \sigma_{0}^{1+\delta}, \delta=0.3-0.5$
- $\sigma_{L}>\sigma_{e}$ to mitigate the ponderomotive broadening
- Scaling of the number of photons $N_{\mathrm{x}-\mathrm{ray}} \propto N_{e} \frac{\varepsilon_{L}}{\sigma_{L}^{2}} \propto \frac{\sigma_{0}^{2}}{\sigma_{0}^{2+2 \delta}}$

