Copper Surfaces: A Comparative Study in Cryogenic High Fields

Advanced Physics Project, 5 credits

Elias Waagaard

Supervisor: Marek Jacewicz

November 16th 2020

UNIVERSITET

• FREIR,

Background: Compact Linear Collider (CLIC)

- Electron-positron accelerator using radio-frequency (RF)
- Higher gradient → shorter facilities → lower costs
- Breakdowns: main limitation to accelerating gradient

Envisioned stages of CLIC, cern.ch

Background: Copper in accelerating structures

- Copper: suitable candidate material for accelerating structures (hard/soft)
- <u>Purpose of this study</u>: behaviour of soft copper at cryogenic temperatures

- Field emission \rightarrow Plasma \rightarrow breakdown
- Enhancement factor β
- Fowler-Nordheim:

 $rac{d(\log I_F/E^2)}{d(1/E)} = -rac{2.84{ imes}10^9 \phi^{1.5}}{eta}$

Set-up and Experimental Method

Set-up: Electrodes

Hard Cu cathode from previous experiments

Electrodes and first stage radiation shield 6

Soft Cu Cathode

Method: Pulses

Marx generator waveform with no breakdown

Marx generator waveform at breakdown

Method: Conditioning and "flat top"

Conditioning: process of developing resistance to breakdowns

2000

1500

Main goals of study

- Breakdown behaviour during conditioning phase
- Maximum electric field and normalized field

$$E_{norm} = \left(rac{V}{V_{max}}
ight) \left(rac{d_{max}}{d}
ight)^{0.7}$$

- Number of pulses between breakdowns during "flat top" mode
- Field emission current: Megger and Heinzinger instruments

Results: Conditioning curves

		T=300~K		T = 30 K	
	Hard Cu 025	Hard Cu 030	Soft Cu 035	Hard Cu 030	Soft Cu 035
E_{max} [MV/m]	78.17	89.75	117.1	117.9	160.9
$E_{norm,max}$	0.604	0.693	0.808	0.994	1.24

Results: Pulses between breakdowns

Fitting coefficients for model $\ P(S)=kS^{-lpha}$

Power fit	Soft Cu Uppsala (2020)	Soft Cu Helsinki	Hard Cu Helsinki	Hard Cu Uppsala (2019)
Single	$\alpha = 0.91 \pm 0.08$	$\alpha = 1.30 \pm 0.05$	N/A	$\alpha = 1.05 \pm 0.1$
Double	$\alpha_1 = 0.95 \pm 0.1$ $\alpha_2 = 1.47 \pm 0.3$	N/A	$\alpha_1 = \overline{1.30 \pm 0.05}$ $\alpha_2 = 1.37 \pm 0.05$	N/A

11

Results: Field emission

Field emission current over electric field

Results: Fowler-Nordheim plots

Field emission after conditioning at 300 K

Field emission after conditioning at 300 K and cooldown to 30 K (only Heinzinger)

imes10⁻⁸

Results: Field emission at warm-up

Field emission after conditioning at 300 K

Average enhancement factor β during warm-up, red dot at 30 K is after additional conditioning at that point 14

Discussion and outlook

- Conditioning
 - Successful conditioning at 300 K
 - Higher electric field for soft copper, but slower
 - Highest accelerating gradient in cryogenic setting
 - "Ricochet" effect
- Number of pulses between breakdowns
 - Could not rule out random (Poissonian) behaviour
 - · Interesting peaks also in Helsinki data
- Field emission
 - Enhancement factor eta increasing with temperature
 - Different order of warm-up?

Conclusions

- Breakdowns main limitation for radio-frequency accelerators
- Soft copper in cryogenic settings
- Conditioning, breakdown behaviour and field emission
- Cryogenic experiments important for high-gradient accelerating technology!

Thank you for your attention!

Results: Conditioning curve fit

Normalized electric field with power fits

Extra slides: Field emission instrument check

• No systematic difference in instruments Megger/Heinzinger