PHYSICS OPPORTUNITIES **OFUTURE CIRCULAR COLLIDER**

PATRIZIA AZZI - INFN-PD/CERN 1st FCC Nordic Days - 22 March 2021

Particle Physics has arrived at an important moment of its History:

1989–1999: Top mass predicted (LEP mZ and Γ Z) Top quark observed at the right mass (Tevatron, 1995) Nobel Prize 1999 (t'Hooft & Veltman)

- It looks like the Standard Model is complete and consistent theory
- - > Was beautifully verified in a complementary manner at LEP, SLC, Tevatron, and LHC
 - EWPO radiative corrections predicted top and Higgs masses assuming SM and nothing else
- \blacktriangleright With mH = 125 GeV, it can even be extrapolated to the Plank scale without the need of New Physics.

> Is it the \mathcal{END} ?

THE PHYSICS LANDSCAPE

1997-2013: Higgs mass cornered (LEP EW + Tevatron mtop , mW) Higgs boson observed at the right mass (LHC 2012) Nobel Prize 2013 (Englert & Higgs)

It describes all observed collider phenomena – and actually all particle physics (except neutrino masses)

WHY NEW COLLIDER(S) / EXPERIMENTS?

- - ► Dark matter
 - SM particles constitute only 5% of the energy of the Universe
 - Baryon Asymmetry of the Universe
 - Where is anti-matter gone?
 - Neutrino Masses
 - > Why so small? Dirac/Majorana? Heavier right-handed neutrinos? At what mass?

These facts require Particle Physics explanations We must continue our quest, but HOW?

- Possible experimental ways include:

 - Observation of new phenomena (such as neutrino oscillations, CP violation ...)
 - loops)

> We need to extend mass & interaction reach for those phenomena that SM cannot explain:

> Direct search for and observation of new particles (with any mass and any coupling to SM particles)

Measurements of deviations from precise predictions (such as top and Higgs mass predictions from

- Is new physics at larger masses ? Or at smaller couplings ? Or both ?
 - > No experimental hints as to the origin of these observed (unexplained) phenomena
 - No theoretical hints that would point to one direction more than another
- > Only way to find out: go look, following the historical approach:
 - \blacktriangleright Direct searches for new heavy particles \Rightarrow Need colliders with larger energies
 - Searches for the imprint of New Physics at lower energies, e.g. on the properties of Z, W, top, and Higgs particles \Rightarrow Need colliders / measurements with unprecedented accuracy

WHICH WAY TO GO?

powerful as possible – as there is no specific target

More SENSITIVITY, more PRECISION, more ENERGY

- Future Circular Colliders (FCC) offer the most adapted response to this situation
 - Largest luminosity
 - highest parton energy
 - > synergies and complementarities between ee and pp, etc

WHICH TYPE OF COLLIDER?

The next facility must be versatile with a reach as broad and as

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment

	Total Statistical Experimental	ATLAS a HL-LHC Proj	nd (ection	CN	IS
	— Theory	L	ncerta	ainty	[%]
10	2% 4%	То	t Stat	Ехр	Th
ĸγ		1.8	0.8	1.0	1.3
κ _W		1.7	0.8	0.7	1.3
κ _Z		1.5	0.7	0.6	1.2
κ_{g}		2.5	0.9	0.8	2.1
κ _t		3.4	0.9	1.1	3.1
κ_{b}		3.7	' 1.3	1.3	3.2
$\kappa_{ au}$		1.9	0.9	0.8	1.5
κ_{μ}		4.3	3.8	1.0	1.7
κ _{Zγ}		9.8	7.2	1.7	6.4
(0.02 0.04 0.06	0.08 0.1	0.	12	0.14
		Expected	unc	erta	aintv

Careful studies and projections for the physics at the HL-LHC we have shown: > we have designed amazing detectors that will be able to fully mitigate the 200PU conditions uncertaintities on Higgs couplings of the order of 2-4% and top mass about ~200MeV This precision might still not be sufficient to show the effect of new physics...

AFTER HL-LHC

A CONCRETE TARGET: THE HIGGS BOSON

A CONCRETE TARGET: THE HIGGS BOSON

e+e- collisions

e⁺/e⁻ are point-like

- \rightarrow Initial state well defined (*E*, *p*), polarisation
- \rightarrow High-precision measurements

Clean experimental environment

- \rightarrow Trigger-less readout
- \rightarrow Low radiation levels

Superior sensitivity for **electro-weak states**

- At lower energies (≲ 350 GeV) , **circular** e⁺e⁻ colliders can deliver very large luminosities.
- Higher energy (>1TeV) e⁺e⁻ requires **linear** collider.

e⁺e⁻ VS pp COLLISIONS - THE BASICS

p-p collisions

Proton is compound object

- \rightarrow Initial state not known event-by-event
- \rightarrow Limits achievable precision

High rates of QCD backgrounds

- \rightarrow Complex triggering schemes
- \rightarrow High levels of radiation

High cross-sections for **colored-states**

High-energy **circular** pp colliders feasible

Can produce all the heaviest particles of the Standard Model

FCC-ee ENERGY RANGE AND LUMINOSITY

- High integrated luminosity at the needed Ecm
- Clean environment
- precise knowledge of the center-of-mass energy and of the luminosity
- precise detectors offering plenty of redundancy (and more than one)

Phase	Run duration	Center-of-mass	Integrated
	(years)	Energies (GeV)	Luminosity (al
FCC-ee-Z	4	88-95	150
FCC-ee-W	2	158-162	12
FCC-ee-H	3	240	5
FCC-ee-tt	5	345-365	1.5

- ► Total running time 14(+1)years (~LEP)
 - Ionger shutdown to install the 196 RF for operation at the top threshold

FCC-ee RUN PLAN

The FCC-ee unique discovery potential is multiplied by the access to the four heaviest particles of the Standard Model in its energy range

11

FCC-ee: A DISCOVERY MACHINE AND MORE

- EXPLORE the 10-100 TeV energy scale region with precision measurements of the properties of the Z,W,Higss and top particles
 20-50fold improved precision on EWK observables
 10 fold more precise and model-independent Higgs coupling measurements
 DISCOVER that the Standard Model does not fit
 - Allows understanding of the underlying physics structure
- DISCOVER a violation of flavour conservation/universality
 - ► Flavour physics in 1012 bb events (B0 → K*0 τ + τ -, BS → τ + τ -, ...)
- DISCOVER dark matter as invisible decays of the Z or Higgs
- DISCOVER feebly coupled particles in the 5-100 GeV mass range
 - Such as right handed neutrinos, dark photons, ...

TWO DETECTOR CONCEPTS FOR THE CDR

It was demonstrated that detectors satisfying the requirements are feasible. Two options considered for now with complementary designs > physics performance, beam background, invasive MDI event rates...

Higgs boson production through Higgs strahlung and VBF

- maximum ZH cross section value at √s = 255 GeV
- luminosity drops with √s at constant ISR dissipation power

maximum event production at $\sqrt{s} = 240$ GeV

HIGGS PRODUCTION AT FCC-ee

 55 GeV • higher energy points available for other physics targets (top physics), but they can be used to improve Higgs measurements (in particular Γ_H and Higgs self-coupling)

14

HIGGS PHYSICS - THE RECOIL METHOD

- - Precision measurements: couplings, mass, width
 - Searches for Exotic Higgs, invisible decays
- Traditionally Z « tagged » via its leptonic decays

 - New analyses in progress with the latest software framework

Recoil method unique to lepton collider, it allows to tag Higgs event independent of decay mode:

Iarge FCC-ee statistics and improved detectors will allow to profit also of hadronic decays of Z

Ultimate precision on Higgs couplings below 1% (and measurement of the total width) a milestone of the FCC physics program.

HIGGS COUPLINGS

Yellow highlight for those couplings best measured with FCC-hh

Future colliders combined with HL-LHC Uncertainty values on $\Delta \kappa$ in %. Limits on Br (%) at 95% CL.

Model independent determination of the total Higgs decay width down to 1.3% with runs at √s=240 and √s=365 GeV

ee \rightarrow HZ & H \rightarrow ZZ at $\sqrt{s} = 240$ GeV

- * σ_{HZ} is proportional to g_{HZZ}^2
- * BR(H \rightarrow ZZ) = Γ (H \rightarrow ZZ) / Γ _H is proportional to g_{HZZ}^2/Γ_H
 - $\sigma_{HZ} \times BR(H \rightarrow ZZ)$ is proportional to g_{HZZ}^4 / Γ_H
- * Infer the total width Γ_{H}

HIGGS WIDTH

WW \rightarrow H vv \rightarrow bbvv at $\sqrt{s} = 365$ GeV

 $\Gamma_H \propto \frac{\sigma_{WW \to H}}{BR(H \to WW)} = \frac{\sigma_{WW \to H \to b\bar{b}}}{BR(H \to WW) \times BR(H \to b\bar{b})}$

SOMETHING UNIQUE: ELECTRON YUKAWA COUPLING

$e+e- \rightarrow H @ 125.xxx GeV requires:$

- Higgs mass to be known to <5 MeV from 240 GeV run (CEPC group almost there)</p>
- ► Huge luminosity
- \succ monochromatization (opposite sign dispersion using magnetic lattice) to reduce σECM
- continuous monitoring and adjustment of ECM to MeV precision (transv. Polar.)
- > an extremely sensitive event selection against backgrounds
- > a generous lab director to spend 3 years doing this and neutrino counting

Observable	Present value \pm error
m _Z (keV)	$91,186,700 \pm 2200$
Γ_Z (keV)	$2,495,200 \pm 2300$
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	$20,767\pm25$
$\alpha_{\rm s}~({\rm m_Z})~(\times 10^4)$	1196 ± 30
$R_{b} (\times 10^{6})$	$216,290 \pm 660$
$\sigma_{\rm had}^0$ (×10 ³) (nb)	$41,541 \pm 37$
$N_{\nu} (\times 10^3)$	2991 ± 7
$\sin^2 \theta_W^{\text{eff}} \ (\times 10^6)$	$231,480 \pm 160$
$1/\alpha_{QED} \ (m_Z) \ (\times 10^3)$	$128,952 \pm 14$
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49
m _W (MeV)	$80,350 \pm 15$
$\Gamma_{\rm W}$ (MeV)	2085 ± 42
$\alpha_{\rm s}~({\rm m_W})~(\times 10^4)$	1170 ± 420
$N_{\nu} (\times 10^3)$	2920 ± 50
m _{top} (MeV)	$172,740 \pm 500$
Γ_{top} (MeV)	1410 ± 190
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3
ttZ couplings	$\pm 30\%$

In this context would need from theory full 3-loop calculations for the Z pole and propagator EWK corrections and probably 2-loop for EWK corrections to the WW cross section. Matching these experimental precisions motivates a significant theoretical effort.

SELECTED ELECTROWEAK QUANTITIES

FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error
5	100	From Z line shape scan Beam energy calibration
8	100	From Z line shape scan Beam energy calibration
0.06	0.2–1.0	Ratio of hadrons to leptons acceptance for leptons
0.1	0.4–1.6	From R_{ℓ}^{Z} above [43]
0.3	< 60	Ratio of $b\bar{b}$ to hadrons stat. extrapol. from SLD [44]
0.1	4	Peak hadronic cross-section luminosity measurement
0.005	1	Z peak cross sections Luminosity measurement
3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]
0.02	1–3	b-quark asymmetry at Z pole from jet charge
0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
0.5	0.3	From WW threshold scan Beam energy calibration
1.2	0.3	From WW threshold scan Beam energy calibration
3	Small	From R_{ℓ}^{W} [45]
0.8	Small	Ratio of invis. to leptonic in radiative Z returns
17	Small	From tt threshold scan QCD errors dominate
45	Small	From tt threshold scan QCD errors dominate
0.1	Small	From tt threshold scan QCD errors dominate
0.5–1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$

ELECTROWEAK PRECISION MEASUREMENTS

TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- $R_{I} = hadronic/leptonic width (\alpha_{s}(m^{2}_{7}), lepton)$ couplings, precise universality test)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)
- Tau polarization $(sin^2\theta_{eff})$ $\alpha_{\text{QED}}(\text{m}_{\text{Z}}^2))$
- $R_b, R_{c,} A_{FB}(bb), A_{FB}(cc)$ (q

130

NEUTRAL COUPLINGS AND EWK ANGLE

- > $\sin^2 \theta_{eff}$ can be measured with 5x10⁻⁶ (at least) from:
 - > Muon forward-backward asymmetry at pole $A_{FR}^{\mu\mu}(m_Z)$ assuming muon-electron universality
 - uncertainty driven by knowledge of CM energy (point to point errors)
 - Tau polarization without assuming lepton universality
 - e, μ and τ coupling (with $\Gamma_e, \Gamma_\mu, \Gamma_\tau$)

 - > Preliminary estimate to measure $\sin^2 \theta_{eff}$ with 6.6x10⁻⁶ precision
- > Asymmetries A_{FR}^{bb} , A_{FR}^{cc} provide input to quark couplings (together with Γ_b , Γ_c)

$$A_e = \frac{2g_{V_e}g_{A_e}}{(g_{V_e})^2 + (g_{A_e})^2} = \frac{2g_{V_e}/g_{A_e}}{1 + (g_{V_e}/g_{A_e})^2}$$

► Tau polarization measures A_e and A_τ , can input to $A_{FB}^{\mu\mu} = \frac{3}{4}A_e A_\mu$ to measure separately

Very large tau statistics and improved knowledge of parameters (BF, decay modeling). > Also use best decay channels, $\tau \rightarrow \rho v \tau$. Constraint on detector performance for γ/π°

OkuWW (10⁸ WW)

From data collected around and above the WW threshold:

- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^W = \Gamma_{had} / \Gamma_{lept} (\alpha_s(m^2_Z))$
- Γ_{e} , Γ_{μ} , Γ_{τ} (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

THE WW THRESHOLD

with E_1 =157.1 GeV E_2 =162.3 GeV f=0.4 Δm_W =0.62 $\Delta \Gamma_W$ =1.5 (MeV)

need syst control on :

- ΔE(beam)<0.35 MeV (4x10⁻⁶)
- Δε/ε, ΔL/L < 2 10⁻⁴
- $\Delta \sigma_{\rm B} < 0.7 \, {\rm fb} \, (2 \, 10^{-3})$

- coupling. Scan strategy can be optimized
 - thresholds for a 10% precision (profiting of the better α S).
 - model dependence)

Run at 365 GeV used also for measurements of top EWK couplings (at the level of 10⁻²-10⁻³) and FCNC in the top sector.

TOP PHYSICS AT FCC-ee

Threshold region allows most precise measurements of top mass, width, and estimate of Yukawa

FCC-ee has some standalone sensitivity to the top Yukawa coupling from the measurements at

But, HL-LHC result of about 3.1% already better (with FCC-ee Higgs measurements removing the

 ILC_{1000} ILC_{500} ILC_{250}

Decay mode	$B^0 \to K^*(892)e^+e^-$	$B^0 \to K^*(892)\tau^+\tau^-$
Belle II	$\sim 2\ 000$	~ 10
LHCb Run I	150	-
LHCb Upgrade	~ 5000	-
FCC-ee	~ 200000	~ 1000

Yelds for flavor anomalies studies: b→sll yelds and $B^0 \rightarrow K^{*0}\tau^+\tau^-$ Full reconstruction possible

- Expected precisions scaled with statistics and anticipated flavour tagging performance when necessary.
- First observation of *CP* violation in *B* mixing is at reach.
- A global analysis of BSM contributions in box mixing processes, assuming *Minimal Flavour* Violation pushes the BSM energy scale to 20 TeV.

<u>TERA-Z - FLA</u>

CKM and CP-violation in quark mixings

Observable / Experiments	Current W/A	Belle II (50 /ab)	LHCb-U1 (23/fb)	FCC-ee
CKM inputs				
γ (uncert., rad)	$1.296\substack{+0.087\\-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
$ V_{ub} $ (precision)	5.9%	2.5%	6%	1%
Mixing-related inputs				
$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	0.691 ± 0.005
ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	-3.65 ± 0.01
$\Delta m_d ~(\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	same
$\Delta m_s ~(\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	same
$a_{\rm fs}^d (10^{-4}, {\rm precision})$	23 ± 26	-7 ± 15	-7 ± 15	-7 ± 2
$a_{\rm fs}^s$ (10 ⁻⁴ , precision)	-48 ± 48	n/a	0.3 ± 15	0.3 ± 2

global analysis

Bottomline: the constraints on BSM scale issued from *B*-mesons mixing observables with Minimal Flavour Violation $\Lambda_{\rm NP}(\Delta F = 2) > 20 { m ~TeV}$

26

								heet	Decay	Cui
									Z -> e µ	
				- Visible Z decays	3 × 1012	nt bound	FCC-ee se	nsitivi	Ζ->μτ	
	Vicibl		112	$Z \rightarrow \tau^+ \tau^-$	1.3 × 1011	Curre	ent bound	FCC	Ζ -> eτ	
Decay	Current bound	FCC-ee sensitivity	j · <i>–</i>	I vs. 3 prongs	3.2 × 1010	ı 0	.75 x ⁻⁶			
, Z -> e µ	0.75 × ⁻⁶	10-8	3 × 1012	3 vs in SM <10-5	0 2 8× 109		2 × 10-6		Decay	Cur
Ζ -> μτ	12 × 10-6	10-9	1.3 × 1011			9.	8 × 10-6		τ -> μγ	
Z -> eτ	9.8 × 10-6	10-9	3.2 × 1010	l vs. 5 prong	2.1×10^{8}	Curre	ent bound	FCC	τ -> 3 μ	
Decay	Current bound	FCC-ee sensitivity	2.8× 109	l vs. 7 prong	< 67,000	4	4 🗙 1 🗅 - 8		2 × 10-9	
τ -> μγ	4.4 × 10-8	2 × 10-9	2.1 × 10 ⁸	I vs 9 prong	?	יי ר				
τ-> 3μ	2 × 10-8	10-10	< 67.000			. 2	. X I U ⁻⁰		10-10	
Nor	S 17.90 - Today	(2018)	?	Property	Current WA	4	FCC-ee sta	at	FCC-ee syst	t
C FCC-ee syst	Âa 17.85 – 17.85 –		R6 +/- 0 I 7	Mass [MeV]	1776.86 +	/- 0.12	0.004		0.1	
0.1	17.80- FCC	-ee	Current V	Electron BF [%]	17.82 +/-	0.05	0.0001		0.003	
0.003	17.75 –		1776.86	Muon BF	17.39 +/-	0.05	0.0001		0.003	
0.003	17.70 –	Lepton universality with	17.82 +	Lifetime [fs]	290.3 +/	- 0.5	0.005		0.04	
0.04	17.65 –	m _τ = 1776.86 ± 0.12 MeV	17.39 +							
patri	289	290 عود T lifetime [fs] בווכנוווכ [۱۵]	290.3 -	H/- 0.5	unique o	oporti	unities in	n ba	ackup	

 $c_1 \alpha_1$

- Several models that describe possible exotic Z decays in dark sector candidate particles have been studied
- Complementarity between experiments depending on the parameter space
- Also comparison with **HL-LHC**

 10^{-12}

 10^{-11}

 10^{-10}

 10^{-9}

 10^{-8}

 10^{-7}

 10^{-6}

 10^{-5}

 10^{-4}

 10^{-3}

 10^{-2}

 10^{-1}

Br[Z]

BSM DIRECT SEARCHES - STERILE NEUTRINO LL

- Long Lived Particles: recent study with a SiD inspired detector and 110ab-1 at Z pole 1710.03744
- \blacktriangleright Rations of $\theta \alpha$ measureable with high accuracy
- Test minimal type I seesaw hypotesis
- \succ Together with ΔM also tests the compatibility with leptogenesis

L~1m for mN=50GeV and |U|2=10⁻¹²

- Similar situation for Axion-like-particles: luminosity is key to the game
- Complementarity with High energy lepton collider
- Much more left to explore at FCC-ee-Z and FCC-hh!
- Fertile ground for development of innovative detector ideas!

BSM DIRECT SEARCHES - ALPS

Single operator fit can be informative model independent result only for global fit

What do we mean by "Sensitivity to NP up the scale of N TeV?" e.g.

 $rac{c}{\Lambda^2} \sim rac{g_{
m NP}^2}{M_{
m NP}^2} < 0.01 \ {
m TeV}^{-2} \longrightarrow M_{
m NP} > 10 \, g_{
m NP} \ {
m TeV} \quad \left(egin{array}{c} {
m Weakly coupled NP} \ M_{
m NP} > 10 \ {
m TeV} \ (g_{
m NP} \sim 1) \end{array}
ight)$

Requires 10-fold improvement in theory calculations MARY ON NEW PHYSICS SENSITIVITIES

Fit to new physics effects parameterized by dim 6 SMEFT operators **Points to the**

physics to be studied with FCC-hh

> 10¹⁰ Higgs bosons => 10^4x today

> 10¹² top quarks => 5 10⁴ x today > =>10¹² W bosons from top decays > =>10¹² b hadrons from top decays

$$\blacktriangleright$$
 =>10¹¹ $t \rightarrow W \rightarrow \tau$

► few $10^{11}t \rightarrow W \rightarrow charm \ hadrons$

Amazing potential, extreme detector and reconstruction challenges

NUMEROLOGY FOR FCC-hh, 10ab⁻¹, \sqrt{s} =100 TeV

precision measurements ⇒rare decays ➡FCNC probes: H->eµ

precision measurements rare decays FCNC probes: $t \rightarrow cV$ (V=Z,g,y), t->cH CP violation BSM decays ???

 \rightarrow rare decays $\tau -> 3\mu, \mu\gamma, CPV$

➡rare decays D->µ+µ-,... CPV

DI-JET PRODUCTION AT LARGE MASS AT FCC-HH

50

-22/03/2021 Day Nordi st FCC r patrizia az

> 1pb⁻¹ to recover sensitivity of HL-LHC ==> 1 $day@10^{32}$

> 50pb⁻¹ to recover 2x sensitivity of HL-LHC ==> 1 month@ 10^{32}

Ifb⁻¹ to recover 3x sensitivity of HL-LHC ==> 1 year@ $2x10^{32}$

FCC Nordi Day -22/03/2021

1st

patrizia az

- EW and QCD dynamics
- The production rate of W[±](Z0) bosons at 100 TeV is about

W AND Z PRODUCTION AT FCC-HH

Production of W and Z bosons is an extremely important probe of

1.3($\dot{0}$.4)µb. This corresponds to O(10¹¹) leptonic decays per ab⁻¹.

sign longitudinal W bosons, as function of luminosity, for various kinematic cuts. Right: sensitivity of the longitudinal boson scattering cross section w.r.t. deviations of the WWH coupling from its SM value

> Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the ss in the
> **Table 4.5** Constraints on the HWW coupling modif
> di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process. $W_L W_L \rightarrow HH$ process

		$\boxed{m_{l^+l^+} \operatorname{cut}} > 50 \ \mathrm{GeV}$	> 200 GeV > 500 GeV > 1000 GeV	
m_{l+l+} cut	> 50 GeV	$\kappa_W \in [0.98, 1.05]$] [0.99,1.04] [0.99,1.03] [0.98,1.02]	000 Ge
$\kappa_W \in$	[0.98, 1.05]	[0.99, 1.04]	[0.99, 1.03]	[0.98, 1.02

The FCC integrated program (ee, hh, eh) has built-in synergies and complementarities It will provide the most complete and model-independent studies of the Higgs boson

FCC-ee provides 10^6 HZ + 10^5 WW \rightarrow H events

Absolute determination of g_{HZZ} to ±0.17%

Model-independent determination of $\Gamma_{\rm H}$ to ±1%

- → Fixed « candle » for all other measurements including those made at HL-LHC or FCC-hh
- \rightarrow Measure couplings to WW, bb, $\tau\tau$, cc, gg, ... **Even possibly the Hee coupling!**
- \rightarrow First sensitivity to g_{HHH} to ±34% (±21% with 4IP)

FCC SYNERGIES: THE HIGGS BOSON

FCC-eh provides 2.5 10⁶ Higgs bosons With the FCC-ee candle, further improves on several measurements (e.g., g_{HWW})

- ► Use the ratio of $\sigma(ttH)/\sigma(ttZ)$.
- kinematical boundaries ($m_Z \simeq m_H$)
- > Analysis using boosted $H/Z \rightarrow bb$ decays (Delphes)
- > $\Delta y_t/y_t \approx 1\%$ using ttZ EW Coupling and $BR(H \rightarrow b\bar{b})$ from FCC-ee

FCC SYNERGIES: TOP - YUKAWA COUPLING

https://cds.cern.ch/record/2642471

Profit of similar dynamics (QCD Correction, scale, alphaS syst.) and

Briefing book

Collider	Туре	\sqrt{s}	P [%]	N _{Det}	\mathscr{L}_{inst} /Det.	L	Time	Ī
			$[e^{-}/e^{+}]$		$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	$[ab^{-1}]$	[years]	
HL-LHC	pp	14 TeV	_	2	5	6.0	12	
HE-LHC	pp	27 TeV	_	2	16	15.0	20	-
FCC-hh	pp	100 TeV	-	2	30	30.0	25	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	I 6 yrs
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
	(1y SD befor	re $2m_{top}$ run)			(+1)	
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	
		350 GeV	\pm 80/ \pm 30	1	1.6	0.2	1	> 22 V/CC
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
	(1	ly SD after 2	250 GeV rui	1)			(+1)	_
CEPC	ee	M_Z	0/0	2	17/32	16	2	
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
	(2y	SDs betwee	n energy sta	ges)			(+4)	
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	
HE-LHeC	ep	1.8 TeV	_	1	1.5	2.0	20	
FCC-eh	ep	3.5 TeV	_	1	1.5	2.0	25	

FCC-hh:

• 5 ab-1 during the first 10 years

FCC SYNERGIES: HIGGS SELF COUPLING

10% precision achievable in 10 years (or less)

➤ Higher parton centre-of-mass energy → A BIG STEP IN HIGH MASS REACH

- Strongly coupled new particles, new gauge bosons (Z', W'), excited quarks: up to 40 TeV!
- Extra Higgs bosons: up to 5-20 TeV
- High sensitivity to high energy phenomena, e.g., WW scattering, DY up to 15 TeV

about x6 LHC mass reach at high mass, well matched to reveal the origin of deviations indirectly detected at the FCC-ee

FCC-HH DISCOVERY POTENTIAL

FCC SYNERGIES: FEEBLY INTERACTING PARTICLES

- Heavy Right-Handed Neutrinos

The FCC is an ambitious project for the future of particle physics with concrete goals and deliverables to find the answers that we need from Nature!

- summarized in the **CDRs**
 - of course exploration of the physics potential is continuing
- to inform the technology choices
- \blacktriangleright At the same time a whole revolution is also happening in terms of
 - fully exploit the detectors of the future

NEXT STEPS

> A first round of analyses to frame the impressive physics case has been

The focus now is to perform the studies (« case studies ») to determine the detector performance needed to achieve the desired precision and

developing the software framework that will sustain the work in such a long timespan in the future and that is common to all future projects.

> Our current job is also to develop new reconstruction and analysis tools that

Physics Performance Group is the place where all this comes together Many « Case Studies » in progress: looking forward the FCC-Week 2021

FIND OUT MORE: SOME FCC DOCUMENTATION

4 CDR volumes published in EPJ

FCC PhysicsOpportunities

FCC-hh: The Hadron Collider

FCC-ee: The Lepton Collider

HE-LHC: The High Energy Large Hadron Collider

- Future Circular Collider European Strategy Update Documents
 - ► (FCC-ee), (FCC-hh), (FCC-int)
- FCC-ee: Your Questions Answered
 - arXiv:1906.02693
- Circular and Linear e+e- Colliders: Another Story of Complementarity
 - ► arXiv:1912.11871
- der Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders
 - arXiv:1901.02648
 - Polarization and Centre-of-mass Energy Calibration at FCC-ee
 - ► arXiv:1909.12245

arXiv:1906.02693, FCC-ee: Your questions answered

e+e- collisions

√s → Physics ↓	mz	2m _W	HZ max. 240-250 GeV	2m _{top} 340-380 GeV	500 GeV	1.5 TeV	3 TeV	28 TeV 37 TeV 48 TeV	100 TeV	Leading Physi Questions
Precision EW (Z, W, top)	Transverse polarization	Transverse polarization		m_{W} , α_{S}						Existence of more Interacting partic
QCD (α_{s}) QED (α_{QED})	5×1012 Z	3×10 ⁸ W	105 H→gg							Fundamental cons and tests of QED/
Model-independent Higgs couplings	ee √s	→ H = m _H	1.2×10 ⁶ HZ ar at two e	nd 75k WW→H energies					<1% precision (*)	Test Higgs natu
Higgs rare decays									<1% precision (*)	Portal to new phy
Higgs invisible decays									10-4 BR sensitivity	Portal to dark ma
Higgs self-coupling			3 to 50 from lo to Higgs cr	oop corrections oss sections					5% (HH prod) (*)	Key to EWSB
Flavours (b, τ)	5×1012 Z									Portal to new phy Test of symmetr
RH v's, Feebly interacting particles	5×1012 Z								1011 W	Direct NP discov At low coupling
Direct search at high scales					M _χ <250GeV Small ∆M	M _χ <750GeV Small ∆M	M _χ <1.5TeV Small ∆M		Up to 40 TeV	Direct NP discov At high mass
Precision EW at high energy							Y		<i>W, Z</i>	Indirect Sensitivit Nearby new phys
Quark-gluon plasma Physics w/ injectors										QCD at origin

Green = Unique to FCC; Blue = Best with FCC; (*) = if FCC-hh is combined with FCC-ee; Pink = Best with other colliders;

pp collisions

