The SMEFT and its precision future

Tyler Corbett Niels Bohr Institute

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2020

ATLAS	Preliminary
-------	-------------

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ, γ	Jets†	ET	∫£ dt[fb	Limit			Reference
Extra dimensions	ADD $G_{VK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD coBH ADD 2BH high $\Sigma p\tau$ ADD BH high $\Sigma p\tau$ ADD BH high $\Sigma p\tau$ Bulk RS $G_{KK} \rightarrow WWV/ZZ$ Bulk RS $G_{KK} \rightarrow WV - (rqq)$ Bulk RS $g_{KK} \rightarrow WV - (rqq)$ Bulk RS $g_{KK} \rightarrow WV - (rqq)$ Bulk RS $g_{KK} \rightarrow WV - (rqq)$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ \geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j -2j $\ge 2j$ $\ge 3j$ -3l 2j/1J $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3$	Yes - - - Yes 2) Yes J Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1 36.1	5	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.0 TeV	$\begin{array}{l} n=2 \\ n=3 \ LZ \ NLO \\ n=6 \\ n=6, \ M_D=3 \ TeV, \ nt \ BH \\ \kappa/\overline{M}_{N2}=0.1 \\ \kappa/\overline{M}_{N2}=0.1 \\ \kappa/\overline{M}_{N2}=1.0 \\ \Gamma/m=15\% \\ The(1,1) \ S(A^{(1,1)} \to ct)=1 \end{array}$	1711.03801 1707.04147 1703.09127 1606.02865 1512.02586 1707.04147 1808.02380 2004.14616 1804.10823 1803.06678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ & X' \to t t \\ \mathrm{Loptophobic} \ & X' \to t b \\ \mathrm{Loptophobic} \ & X' \to t b \\ \mathrm{Loptophobic} \ & X' \to t t \\ \mathrm{SSM} \ & W' \to t r \\ \mathrm{SSM} \ & W' \to t r \\ \mathrm{HVT} \ & W' \to W \to qaqg \ \mathrm{model} \ B \\ \mathrm{HVT} \ & V' \to WH/2M \ \mathrm{model} \ B \\ \mathrm{HVT} \ & V' \to WH \ \mathrm{model} \ B \\ \mathrm{LRSM} \ & W_{t'} \to t b \\ \mathrm{LRSM} \ & W_{t'} \to w N_{t'} \end{array}$	$2 e, \mu$ 2τ - $0 e, \mu$ $1 e, \mu$ 1τ $1 e, \mu$ $0 e, \mu$ multi-channe 2μ	- 2 b ≥ 1 b, ≥ 2: - 2 j/1 J 2 J ≥ 1 b, ≥ 2: 0 1 J	- J Yes Yes Yes J J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	imass imass<	8.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.33 TeV 3.2 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_n) = 0.5 \text{ TeV}, g_L = g_R$	1903.04248 1709.07242 1805.0529 2005.05138 1906.05699 2004.14638 1906.05689 1712.06518 CERN-EP-2020-073 1807.14673 1904.12679
õ	Ciagga Cillag Cillag	2 e, μ ≥1 e,μ	2 j 	- - Yes	37.0 139 36.1		2.57 TeV	21.8 TeV $\bar{\eta}_{LL}$ 35.8 TeV $\bar{\eta}_{LL}$ $ C_{42} = 4\pi$	1703.09127 CERN-EP-2020-056 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM)	0 e, μ δ) 0 e, μ 0 e, μ 0 -1 e, μ	1 - 4j 1 - 4j $1 J, \le 1j$ 1 b, 0.1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	head Head 1. 700 GeV	1.55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_{q}{=}0.25, g_{\gamma}{=}1.0, m(\chi) = 1 \ {\rm GeV} \\ g{=}1.0, m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
5	Scalar LO 1 st gen Scalar LO 2 nd gen Scalar LO 3 nd gen Scalar LO 3 nd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	0 mass 0 mass 0° moss 1.03 970 0 970 0	1.4 TeV 1.56 TeV TeV eV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{L}Q_1^{\prime} \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{L}Q_1^{\prime} \rightarrow \tau\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ BT_{5(3)} \ T_{5(3)} \ T_{5(3)} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ Q \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe 2(SS)/≥3 e.μ 1 e.μ 0 e.μ, 2 γ 1 e.μ	$ \begin{array}{l} \\ \\ \\ \geq 1 \ b_i \geq 1 \ j \\ \geq 1 \ b_i \geq 1 \ j \\ \geq 1 \ b_i \geq 1 \ j \\ \geq 4 \ j \end{array} $	Yes Yes Yes Yes	36.1 36.1 36.1 79.8 20.3	mass mass 4, mass mass mass 1, mass 690 GeV	1.37 TeV 1.34 TeV 1.64 TeV 1.65 TeV 1.85 TeV 21 TeV	$\begin{split} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}\{T_{5/3} \rightarrow Wt\} = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}\{Y \rightarrow W0\} = 1, \ c_{\text{R}}(Wb) = 1 \\ & \kappa_{\text{R}} = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04251
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j -	-	139 36.7 36.1 20.3 20.3	mass mass mass mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only a^* and $d^*, \Lambda = m(q^*)$ only a^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet H ^{±a} → (/ Higgs triplet H ^{±a} → (r Muti-charged particles Magnetic monopoles	1 e, μ 2 μ 1,3,4 e, μ (SS 3 e, μ, τ - -	≥ 2 j 2 j 3) - - -	Yes 	79.8 36.1 36.1 20.3 36.1 34.4	⁴ mass 560 GeV ⁴ mass 870 Ge ⁴⁴ mass 870 Ge ⁴⁴ mase 870 GeV ⁴⁴ mase 400 GeV ⁴⁴ mase 100 GeV ⁴⁴ mase 100 GeV	3.2 TeV 1 22 TeV 2.37 TeV	eq:massessessessessessessessessessessessesse	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	Vs = 8 TeV par	tial data	full d	ata		10-1	1 1	⁰ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

$$\mathcal{M} \sim \frac{g_{\rm W}^2}{2} \, \frac{(\bar{\nu}_\mu \gamma^\mu P_L \mu) (\bar{e} \gamma^\mu P_L \nu_e)}{k^2 - M_W^2} \label{eq:M_wight_matrix}$$

SMEFT: Effective Vertices $(taking H \rightarrow v + h)$

- T3: $Q_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H)$
- T3: $Q_{HD} = (H^{\dagger}D^{\mu}H)^*(H^{\dagger}D^{\mu}H)$
- T4: $Q_{HV} = (H^{\dagger}H)V^{\mu\nu}V_{\mu\nu}$
- T4: $Q_{HWB} = (H^{\dagger}\tau^{I}H)W_{\mu\nu}^{I}B^{\mu\nu}$

T5:
$$Q_{\psi H} = (H^{\dagger}H)(\bar{\Psi}H\psi)$$

T7: $Q_{HL}^{(3)} = (H^{\dagger}i\vec{D}_{\mu}^{I}H)(\bar{L}\gamma^{\mu}L)$
T7: $Q_{H\Psi}^{(1,3)} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\Psi}\gamma^{\mu}\Psi)$
T7: $Q_{H\psi} = (H^{\dagger}\vec{D}_{\mu}H)(\bar{\psi}\gamma^{\mu}\psi)$
T8: $Q_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$

Non-SM-like kinematic structure

Global fits of the SMEFT

Electroweak Precision Data

An example global fit

Long term goals for the SMEFT

- Do these global fits
- 2 Improve theory predictions, understand theory errors
- 8 Measure a deviation
 - \rightarrow correlations between operators reveal nature of NP
 - → scale at which unitarity is violated gives scale of NP (i.e. as π scattering predicts $\rho \sim 1$ GeV)

Extremely important for FCC-ee as a precision machine

Still important for FCC-hh for physics on a (SM) pole

SMEFT Loops (short version)

Many different groups doing loops in the SMEFT Some of the calculations done include:

- *H*γγ (see e.g. 1507.03568)
- EWPD (arXiv:1909.02000)
- $pp \rightarrow WW, WZ, HZ, HW$ (QCD only, see e.g. arXiv:2003.07862)

Automated QCD loops in Madgraph w/ SMEFT@NLO (2008.11743)

Background field method for analytic loops (e.g. TC arXiv:2010.15852)

Loops give us a hold on theory errors!

tt production at one loop in SMEFT@NLO

SM: 744^{+12%}_{-12%}pb

	$\mathcal{O}(\frac{1}{\Lambda^2})$	$=\frac{1}{\mathrm{TeV}^2}$	$\mathcal{O}(\frac{1}{\Lambda^4} = \frac{1}{\mathrm{TeV}^4})$			
$(\psi\psi)^2$	tree	loop	tree	loop		
$(\bar{t}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu t_R)$.67 ^{+1%} pb	.41 ^{+13%} pb	4.66 ^{+6%} pb	5.92 ^{+6%} pb		
$(\bar{t}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu t_R)$	$21^{+1\%}_{-1\%} \text{pb}$	$306^{+30\%}_{-22\%} \text{pb}$	2.62 ^{+6%} pb	$3.46^{+5\%}_{-5\%} {\rm pb}$		
$(ar{Q}_3\gamma^\mu q_i)(ar{q}_i\gamma_\mu Q_3)$	$1.92^{+0\%}_{-1\%}{ m pb}$	$1.05^{+17\%}_{-22\%}{ m pb}$	7.25 ^{+6%} pb	9.32 ^{+5%} pb		

1 Tree level result for $\frac{1}{\Lambda^2} \Rightarrow$ error in SM which is consistent w SMEFT

tt production at one loop in SMEFT@NLO

SM: 744^{+12%}_{-12%}pb

	$\mathcal{O}(\frac{1}{\Lambda^2})$	$=\frac{1}{\mathrm{TeV}^2}$	$\mathcal{O}(\frac{1}{\Lambda^4} = \frac{1}{\mathrm{TeV}^4})$			
$(\psi\psi)^2$	tree	loop	tree	loop		
$(\bar{t}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu t_R)$.67 ^{+1%} pb	.41 ^{+13%} pb	4.66 ^{+6%} pb	5.92 ^{+6%} pb		
$(\bar{t}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu t_R)$	$21^{+1\%}_{-1\%} {\rm pb}$	$306^{+30\%}_{-22\%} \text{pb}$	2.62 ^{+6%} pb	3.46 ^{+5%} pb		
$(ar{Q}_3\gamma^\mu q_i)(ar{q}_i\gamma_\mu Q_3)$	$1.92^{+0\%}_{-1\%}{ m pb}$	$1.05^{+17\%}_{-22\%}{ m pb}$	7.25 ^{+6%} pb	9.32 ^{+5%} pb		

1 Tree level result for $\frac{1}{\Lambda^2} \Rightarrow$ error in SM which is consistent w SMEFT 2 Loop result for $\frac{1}{\Lambda^2} \Rightarrow$ error in tree $\frac{1}{\Lambda^2}$, $\mathcal{O}(60 - 146\%)$

tt production at one loop in SMEFT@NLO

SM: 744^{+12%}_{-12%}pb

	$\mathcal{O}(\frac{1}{\Lambda^2})$	$=\frac{1}{\mathrm{TeV}^2}$	$\mathcal{O}(\frac{1}{\Lambda^4} = \frac{1}{\mathrm{TeV}^4})$			
$(\psi\psi)^2$	tree	loop	tree	loop		
$(\bar{t}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu t_R)$.67 ^{+1%} pb	.41 ^{+13%} pb	4.66 ^{+6%} pb	5.92 ^{+6%} pb		
$(\bar{t}_R \gamma^\mu d_R) (\bar{d}_R \gamma_\mu t_R)$	$21^{+1\%}_{-1\%} \text{pb}$	$306^{+30\%}_{-22\%} \text{pb}$	2.62 ^{+6%} pb	3.46 ^{+5%} pb		
$(ar{Q}_3\gamma^\mu q_i)(ar{q}_i\gamma_\mu Q_3)$	$1.92^{+0\%}_{-1\%}{ m pb}$	$1.05^{+17\%}_{-22\%}{ m pb}$	7.25 ^{+6%} pb	9.32 ^{+5%} pb		

- 1 Tree level result for $\frac{1}{\Lambda^2} \Rightarrow$ error in SM which is consistent w SMEFT
- **2** Loop result for $\frac{1}{\Lambda^2} \Rightarrow$ error in tree $\frac{1}{\Lambda^2}$, $\mathcal{O}(60 146\%)$
- **3** Tree level result for $\frac{1}{\Lambda^4} \Rightarrow$ error in tree $\mathcal{O}(300 1200\%)???$ $|\mathcal{M}|^2 \equiv |\mathcal{M}_{SM} + \frac{1}{\Lambda^2}\mathcal{M}_6|^2$

NLO SMEFT

The consistent squared amplitude to $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$:

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + \frac{2}{\Lambda^2} \mathrm{Re}\big[\mathcal{M}_{\mathrm{SM}}\mathcal{M}_6\big] + \frac{1}{\Lambda^4}\left(|\mathcal{M}_6|^2 + 2\mathrm{Re}\big[\mathcal{M}_{6^2}\mathcal{M}_{\mathrm{SM}} + \mathcal{M}_8\mathcal{M}_{\mathrm{SM}}\big]\right)$$

NLO SMEFT

The consistent squared amplitude to $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$:

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + \frac{2}{\Lambda^2} \mathrm{Re}\big[\mathcal{M}_{\mathrm{SM}}\mathcal{M}_6\big] + \frac{1}{\Lambda^4}\left(|\mathcal{M}_6|^2 + 2\mathrm{Re}\big[\mathcal{M}_{6^2}\mathcal{M}_{\mathrm{SM}} + \mathcal{M}_8\mathcal{M}_{\mathrm{SM}}\big]\right)$$

So SMEFT@NLO is missing $\mathcal{M}_{6^2}\mathcal{M}_{\rm SM}$ and $\mathcal{M}_8\mathcal{M}_{\rm SM}$ terms...

- 1 \mathcal{M}_{6^2} requires \mathcal{M}_8 for consistency (renormalizability)
- 2 \mathcal{M}_8 seems intractible sooo many parameters, $\mathcal{O}(40k)$

NLO SMEFT

The consistent squared amplitude to $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$:

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + \frac{2}{\Lambda^2} \mathrm{Re}\big[\mathcal{M}_{\mathrm{SM}}\mathcal{M}_6\big] + \frac{1}{\Lambda^4}\left(|\mathcal{M}_6|^2 + 2\mathrm{Re}\big[\mathcal{M}_{6^2}\mathcal{M}_{\mathrm{SM}} + \mathcal{M}_8\mathcal{M}_{\mathrm{SM}}\big]\right)$$

So SMEFT@NLO is missing $\mathcal{M}_{6^2}\mathcal{M}_{\rm SM}$ and $\mathcal{M}_8\mathcal{M}_{\rm SM}$ terms...

- 1 \mathcal{M}_{6^2} requires \mathcal{M}_8 for consistency (renormalizability)
- 2 \mathcal{M}_8 seems intractible sooo many parameters, $\mathcal{O}(40k)$

without a consistent calculation to $\frac{1}{\Lambda^4}$ we lack understanding of theory errors... we need a new methodology to tackle this problem

A taste of geoSMEFT

Consider operators shifting $Z\bar{\psi}\psi$:

$$\sum_{n=0}^{\infty} \frac{c^{(6+2n)}}{\Lambda^{2n+2}} (H^{\dagger}H)^n (H^{\dagger}i\overleftrightarrow{D}^{\mu}H)(\bar{\psi}\gamma_{\mu}\psi)$$

A taste of geoSMEFT

Consider operators shifting $Z\bar{\psi}\psi$:

$$\sum_{n=0}^{\infty} \frac{c^{(6+2n)}}{\Lambda^{2n+2}} (H^{\dagger}H)^n (H^{\dagger}i\overleftrightarrow{D}^{\mu}H)(\bar{\psi}\gamma_{\mu}\psi)$$

Define a field space connection

$$L_{J,A}^{pr} = \left. \frac{\delta^2 \mathcal{L}}{\delta(D^{\mu}\phi)^J \delta(\bar{\psi}_p \gamma_{\mu} \sigma_A \psi_r)} \right|_{\text{fields} \to 0} = -(\phi \gamma_4) \delta_{A4} \sum_{n=0}^{\infty} \frac{c_{H\psi,pr}^{1,(6+2n)}}{\Lambda^{2n}} (H^{\dagger}H)^n + 4 \text{ more}$$

A taste of geoSMEFT

Consider operators shifting $Z\bar{\psi}\psi$:

$$\sum_{n=0}^{\infty} \frac{c^{(6+2n)}}{\Lambda^{2n+2}} (H^{\dagger}H)^n (H^{\dagger}i\overleftrightarrow{D}^{\mu}H)(\bar{\psi}\gamma_{\mu}\psi)$$

Define a field space connection

$$L_{J,A}^{pr} = \left. \frac{\delta^2 \mathcal{L}}{\delta(D^{\mu}\phi)^J \delta(\bar{\psi}_p \gamma_{\mu} \sigma_A \psi_r)} \right|_{\text{fields} \to 0} = -(\phi \gamma_4) \delta_{A4} \sum_{n=0}^{\infty} \frac{c_{H\psi,pr}^{1,(6+2n)}}{\Lambda^{2n}} (H^{\dagger}H)^n + 4 \text{ more}$$

Get an all orders result:

$$\mathcal{M}^{\mu}_{Z\bar{\psi}\psi} = \gamma^{\mu} \frac{\bar{g}_{Z}}{2} \left[\left(2s^{2}_{\theta_{Z}}Q_{\psi} - \sigma_{3} \right) \delta_{pr} + \bar{v}_{T} \langle L^{\psi,pr}_{3,4} \rangle + \sigma_{3} \bar{v}_{T} \langle L^{\psi,pr}_{3,3} \rangle \right]$$

Errors from EWPD to $\frac{1}{\Lambda^4}$

- Perform a χ^2 to EWPD
- include SM two loop results
- include SMEFT results up to $\frac{1}{\Lambda^4}$ including D8 operators
- randomly sample relevant WCs

Errors from EWPD to $\frac{1}{\Lambda^4}$

- Perform a χ^2 to EWPD
- include SM two loop results
- include SMEFT results up to $\frac{1}{\Lambda^4}$ including D8 operators
- randomly sample relevant WCs

Errors from EWPD to $\frac{1}{\Lambda^4}$

- Perform a χ^2 to EWPD
- include SM two loop results
- include SMEFT results up to $\frac{1}{\Lambda^4}$ including D8 operators
- randomly sample relevant WCs

2- and 3-pt functions known in geoSMEFT

Mass Dimension						
Operator form:	6	8	10	12		
$h_{IJ}(D_{\mu}\phi)^{I}(D^{\mu}\phi)^{J}$	2	2	2	2	masses	
$g_{AB}W^A_{\mu u}W^{B,\mu u}$	3	4	4	4	couplings, mix. angles	
$k_{IJA}(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}W^{A}_{\mu\nu}$	0	3	4	4	TGC, HVV	
$f_{ABC} W^A_{\mu\nu} W^{B,\nu\rho} W^{C,\mu}_{\rho}$	1	2	2	2	QGC, TGC	
$Y_{pr}^{\psi}\bar{\Psi}_L\psi_R+h.c.$	$2N_f^2$	$2N_f^2$	$2N_{f}^{2}$	$2N_{f}^{2}$	Yukawa	
$d_A^{\psi,pr}\bar{\Psi}_L\sigma_{\mu\nu}\psi_RW_A^{\mu\nu}+h.c.$	$4N_f^2$	$6N_f^2$	$6N_f^2$	$6N_f^2$	dipoles	
$L^{\psi_R}_{pr,J,A}(D^{\mu}\phi)^J(\bar{\psi}_{p,R}\gamma_{\mu}\sigma_A\psi_{r,R})$	N_f^2	N_f^2	N_f^2	N_f^2	$ ablaar\psi\psi$	
$L^{\Psi_L}_{pr,J,A}(D^{\mu}\phi)^J(\bar{\Psi}_{p,L}\gamma_{\mu}\sigma_A\Psi_{r,L})$	$2N_f^2$	$4N_f^2$	$4N_f^2$	$4N_f^2$	${\sf V}ar\psi\psi$	
The number of new free parameters						

Tyler Corbett (Niels Bohr Institute) — The SMEFT and its precision future — Slide 11/13

Summarizing geoSMEFT

- geoSMEFT rewrite the SMEFT in a curved field space
- number of degrees of freedom saturates for *n*-point fxn
- all orders results in SMEFT power counting
- better understanding of error in SMEFT interpretation
- Further development \Rightarrow merger loops $+\frac{1}{\Lambda^4}$

Precision SMEFT for HL-LHC and FCC

SMEFT is the natural choice for the precision frontier:

- · quantifies heavy new physics we can't produce
- systematically improvable (loops + $\frac{1}{\Lambda^{2n}}$ expansion)
- indirect evidence \rightarrow information about properties of NP

What's happening for the precision SMEFT:

- loop expansion
- geoSMEFT $\rightarrow \frac{1}{\Lambda^4}$ contributions
- further development will allow for merger of the two

Current efforts in SMEFT should help support and inform design of FCC

FCC-ee will give precision SMEFT results that will help identify NP

FCC-hh can give precision SMEFT result on poles (where $E \ll \Lambda$)

FCC-hh can give access to part of SMEFT not seen at HL-LHC (e.g. vertices w two Higgs)

The SMEFT at dimension-six

D6 operators from SM field content \Rightarrow SMEFT @ D6

The SMEFT at dimension-six

D6 operators from SM field content \Rightarrow SMEFT @ D6

Type I: X ³		Type II, III: H^6 , H^4D^2		Type V: $\Psi^2 H^3 + h.c.$		
Q _G	$Q_G = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		$(H^{\dagger}H)^{3}$	Q _{eH}	$(H^{\dagger}H)(\overline{L}eH)$	
Q _Ĝ	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{H\square}$	(<i>H</i> [†] <i>H</i>)□(<i>H</i> [†] <i>H</i>)	Q _{uH}	(H [†] H)(QuĤ)	
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	Q _{HD}	$(H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D^{\mu}H)$	Q _{dH}	(H [†] H)(Q̄dH)	
$Q_{\tilde{W}}$	$\epsilon^{IJK} \tilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
٦	Type IV: $X^2 \Phi^2$		Type VI: $\Psi^2 H^3$		Type VII: $\Psi^2 H^2 D$	
Q _{HG}	$(H^{\dagger}H)G^{A}_{\mu\nu}G^{A\mu\nu}$	Q _{eW}	$(\bar{L}\sigma^{\mu\nu}e)\tau^{I}HW^{I}_{\mu\nu}$	$Q_{HL}^{(1)}$	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{L}\gamma^{\mu}L)$	
Q _{HĜ}	$(H^{\dagger}H)\tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q _{eW}	$(\bar{L}\sigma^{\mu\nu}e)\tau^{I}HB_{\mu\nu}$	$Q_{HL}^{(3)}$	$(H^{\dagger}i\vec{D}^{I}_{\mu}H)(\bar{L}\tau^{I}\gamma^{\mu}L)$	
Q _{HW}	$(H^{\dagger}H)W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^{A}u)\tilde{H}G^{A}_{\mu\nu}$	Q _{He}	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)$	
Q _{HŴ}	$(H^{\dagger}H)\tilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q _{uW}	$(\bar{Q}\sigma^{\mu\nu}u)\tau^{I}\tilde{H}W^{I}_{\mu\nu}$	$Q_{HQ}^{(1)}$	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	
Q _{HB}	$(H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{Q}\sigma^{\mu\nu}u)\tilde{H}B_{\mu\nu}$	$Q_{HQ}^{(3)}$	$(H^{\dagger}i\vec{D}^{I}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	
Q _{HĨ}	$(H^{\dagger}H)\tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^{A}d)HG^{A}_{\mu u}$	Q _{Hu}	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	
Q _{HWB}	$(H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}$	Q _{dW}	$(\bar{Q}\sigma^{\mu\nu}d)\tau^{I}HW^{I}_{\mu\nu}$	Q _{Hd}	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	
Q _{HŴB}	$(H^{\dagger}\tau^{I}H)\tilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{Q}\sigma^{\mu u}d)\tilde{H}B_{\mu u}$	Q _{Hud}	$(H^{\dagger}i\vec{D}_{\mu}H)(\bar{u}\gamma^{\mu}d)$	

Type VIII: $5 \times (\bar{L}L)(\bar{L}L) + 7 \times (\bar{R}R)(\bar{R}R) + 8 \times (\bar{L}L)(\bar{R}R) + (\bar{L}R)(\bar{R}L) + 4[(\bar{L}R)(\bar{L}R) + h.c.] = 25(\bar{\Psi}\Psi)(\bar{\Psi}\Psi)$