

FCC-ee: Analysis of $ee ightarrow t ar{t}$ and first jet studies

Julie Munch Torndal julie.munch.torndal@cern.ch

Supervisors: Jørgen Beck Hansen, Mogens Dam

Niels Bohr Institute

March 22, 2021

SM-EFT anomalous contributions in $t\bar{t}$ production

Keywords of the project

The focus of this project is analysing **top-quark electroweak couplings** in pair produced events. An **optimal observables analysis** is planned to be performed in order to gauge the sensitivity to **anomalous couplings of the top quark to the photon and the Z**. MC data is simulated using FCCSW where an **event selection and event reconstruction** is being developed with plans of performing a **kinematic fit**.

Optimal Observables (OO)

For a single coupling parameter C which is zero at Born level in SM

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{SM} = 1 + \frac{OO_C^{(1)}}{SM} \cdot C + \frac{OO_C^{(2)}}{SM} \cdot C^2 \Rightarrow$$

$$\langle \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \rangle = \langle SM \rangle + \langle OO^{(1)c} \rangle \cdot C + \langle OO^{(2)}_C \rangle \cdot C^2$$

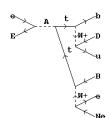
- same statistical sensitivity as a maximum likelihood fit
- requires matrix elements from MadGraph ↔ Feynrules ↔ SMEFT

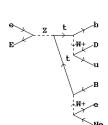
MC generation - signal and background

Signal:

Semileptonic channel

$$t \bar t o b \bar b W^+ W^- o b \bar b q \bar q \ell v_\ell$$

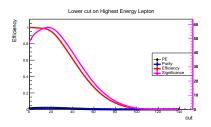

Planned phase of FCC-ee @ $\sqrt{s}=365 \, GeV$

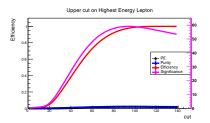

Signature: 1 lepton $+ \not E + 4$ jets

Backgrounds:

$$\begin{array}{c|cccc} \mu\mu & & \gamma Z & ZW^+W^- \\ b\bar{b} & & W^+W^- & ZZZ \\ \sum q\bar{q} & ZZ & \text{single top} \\ q = u,d,c,s & & LHE \text{ files} \\ & & & \text{from MadGraph} \end{array}$$

- All MC files are generated in the FCCSW framework with DelphesPythia8_EDM4HEP and ILD Delphes Card
 - Plan to switch to IDEA Delphes Card to fit common baseline detector for Physics Performance studies


Event Pre-Selection



Significance-Optimised Selection Cut Strategy:

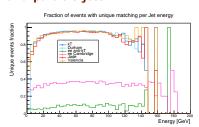
Iterative procedure based on maximum significance on a set of variables

- → choose variable with highest maximum significance
- → make cut and reiterate on remaining set

Pre-selection cuts

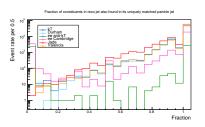
- Exclude events with zero leptons
- Thrust for entire event < 0.85
- 15 GeV < Highest energy lepton < 100 GeV
- 160 GeV < Invariant mass of event excluding highest energy lepton < 300 GeV
- 2nd highest energy lepton < 40 GeV
- Jet specific cuts to be determined




Jet reconstruction:

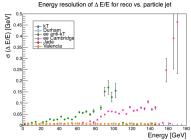
- Jet clustering interface in FCCAnalyses using FastJet
 - Recent developments where plugins have been added
- **Jet Algorithms:** k_t , anti- k_t , Cambridge, and their as e^+e^- versions, Jade Plugin, Valencia Plugin
- Jet reconstruction with exclusive clustering up to **exactly 4 jets**. Highest energy lepton is excluded from the clustering.

Matching angle between reco and particle jets


Unique matching between reco and particle jets



Matching constituents in events with unique matching



b-hadron distribution in reco jets

Energy resolution of jets

Events with full separation of b-hadron decay products:

k_T: 76.3 %
Durham: 79.2 %
ee anti-k_T: 12.3 %
ee Cambridge: 61.7 %

Jade: 73.8 %Valencia: 76.9 %

6 / 11

Next steps

Continuing Jet Studies

- Add b-tagging to Jet clustering interface in FCCAnalyses
- Energy normalisation methods provided by FastJet
- Merging schemes (default is E-scheme)
- Additional ideas?
- Jet Specific Selection Cuts
 - Thrust to test distribution of jets in event shape, invariant mass, etc.

Kinematic Fit

- Imposing constraints to improve resolution and reduce background for event selection and reconstruction of ttbar events
- Semileptonic → maximum kinematic information
- Complete reconstruction
 - Develop software inspired by ABC-fit compatible with FCCSW

Backup

Lepton selector

Highest energy lepton:

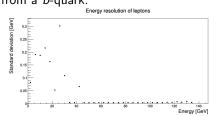
Assuming that the lepton from the W-decay will have the highest energy, it can be used as a selector. This selector has an acceptance of

96.6±0.7 %

- → Find RP highest energy lepton
- → Match to MC particle
- → Parent history (EDM4Hep gives parent and daughter history for MCParticleData)
- → Stopping criteria with PDG and status code

The majority of the highest energy leptons are originating from a W-boson with the same charge. 0.02% are originating from an opposite charge W-boson indicating a decay from a lighter-flavour non-b-quark.

Energy [GeV]


The remaining leptons are originating from a b-quark.

Profile plot for absolute energy difference

Output

Display 0.35

Output

Significance-optimised selection cut strategy

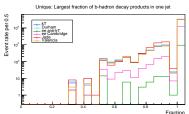
List of variables:

- Highest energy lepton
- 2nd highest energy lepton
- Lepton momentum
- Lepton momentum excluding highest energy lepton
- Momentum difference between highest and second highest energy lepton
- Missing momentum
- Invariant mass of lepton-neutrino pair
- Invariant mass of 1st and 2nd highest energy leptons
- Invariant mass of event excluding highest energy lepton
- Thrust of event excluding highest energy lepton
- Thrust of entire event

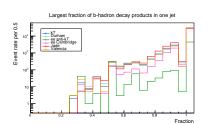
Significance =
$$\frac{sig}{\sqrt{sig + bkg}}$$

Significance of signal for each background before and after Pre-Selection

Background	Sanity check	Pre-Selection
Total	48	192
$\mu\mu$	162	402
$\sum qar q$	169	400
$bar{b}$	198	400
γZ	152	399
WW	61	326
ZZ	234	392
ZWW	405	400
ZZZ	421	405
single top	157	211


$$\textbf{Significance} = \frac{sig}{\sqrt{sig + bkg}} \quad , \quad \textbf{Efficiency} = \frac{sig}{sig_{\text{tot}}} \quad , \quad \textbf{Purity} = \frac{sig}{sig + bkg}$$

b-hadron distribution in reco jets


Events with unique matching Events with non-unique matching

Non-unique: Largest fraction of b-hadron decay products in one jet

b-hadron distribution in particle jets

Events with full separation of b-hadron decay products:

k_T: 62.2 %

Durham: 62.8 %

ee anti-k_T: 3.7 %

• ee Cambridge: 42.5 %

Jade: 54.3 %

Valencia: 64.1 %