UPPSALA UNIVERSITET

Accelerators

and Magnets 2

Volker Ziemann, FREIA

Last time:

* Accelerators: LHC, MAX IV, ...
* Iron dominated magnets
* Superconducting magnets

This time:

* Permanent magnets
* Magnetic measurements
* Alignment

210519, V. Ziemann
https://cern.ch/ziemann

Today's roadmap

- Remember the multipoles
- Permanent magnet
- material
- multipole magnets
- undulators
- solenoids
- Magnetic measurements
- Alignment of magnets

UPPSALA UNIVERSITET

Multipole fields

$$
B_{y}+i B_{x}=B_{0}\left(\frac{x+i y}{R_{0}}\right)^{m-1}=B_{0}\left(\frac{r}{R_{0}}\right)^{m-1} e^{i(m-1) \phi}
$$

m : magnitude $\sim r^{m-1}$, angle $\sim(m-1) \varphi$
$m=$ tumble factor

Permanent magnet material

- Magnets with large remanent field B_{r}
- SmCo ($\mathrm{B}_{\mathrm{r}} \sim 1 \mathrm{~T}$), NdFe ($\mathrm{B}_{\mathrm{r}} \sim 1.4 \mathrm{~T}$)

- Transparent to external magnetic fields
- relative permeability $\mu_{r} \sim 1$
- Manufacture
- Heat powder mixture to melt and rapidly cool

- Grind to make powder, expose to strong field \rightarrow aligns spins
- Sintering: heat and compress
- Expose to even stronger field (imprints field \rightarrow easy axis)

UPPSALA UNIVERSITET

How do they behave?'

Calculate field of several PM as the superposition of the individual fields.

from: www.uge-one.com

macroscopic dipole
 dipoles

Like

* a flux-pump for field lines
* a coil around the surface carrying a very large current
* many many small dipoles, all aligned
* empty space (transparent to external magnetic fields)

How much multipole does each small cube contribute?

- integrate/sum over all small dipoles

$$
\underline{B}^{*}(\hat{z})=\sum_{m=0}^{\infty}\left[\frac{m+1}{2 \pi} \int_{\Omega} \frac{\underline{B}_{r}}{z^{m+2}} d x d y\right] \hat{z}^{m}
$$

Cubes are easier to find than wedges - little more algebra with the integrals

Magnetic field can be calculated entirely analytically!
(continuous, wedges, cubes)

PM quadrupoles

Mark cubes and place with tumble factor $\mathrm{m}=2$ in 3D printed frame

PM cubes pump flux lines around loops that create the field for the beam in the center.

Also analytically calculated fields!

Speciality magnets to produce synchrotron radiation
Make assembly larger and larger, while maintaining the size of the cubes

r_{i}

Derive magnetic field in gap entirely analytically from first principles

$$
\underline{\hat{B}}^{*}(\hat{z})=i \underline{B}_{r} \frac{\sin (\pi / 4)}{\pi / 4}\left(1-e^{-2 \pi h / \lambda}\right) e^{-2 \pi g / \lambda} \cos (2 \pi z / \lambda)
$$

PM solenoids

Axial magnets
Radial magnets

[^0]On-axis field can be calculated analytically (inner coil+outer coil)

$$
\begin{aligned}
B(z)= & \frac{B_{\mathrm{r}}}{2}\left[\left(\frac{z+l}{\sqrt{(z+l)^{2}+R_{2}^{2}}}-\frac{z-l}{\sqrt{(z-l)^{2}+R_{2}^{2}}}\right)\right. \\
& \left.-\left(\frac{z+l}{\sqrt{(z+l)^{2}+R_{1}^{2}}}-\frac{z-l}{\sqrt{(z-l)^{2}+R_{1}^{2}}}\right)\right]
\end{aligned}
$$

Accelerators and Magnets 2

Radial magnets

- Easy axis points 'inwards'

Axial magnets

- Easy axis points 'forwards'

Magnetic measurements with a Hall sensor

- Magnetic field measurements
- Pass current I through semi-conductor (left-to-right)
- Perpendicular magnetic field B deflects charge carriers to upper and lower contacts
- Charges accumulate and create electric field E to balance the magnetic deflection
- $U_{h}=E d$
- A1324
- $\mathrm{V}_{\mathrm{c}}, \mathrm{GND}, \mathrm{U}_{\mathrm{h}}$
- $50 \mathrm{mV} / \mathrm{mT}$

Frame from an old CD drive with stepper motor driven by an Arduino.

Control via RS-232 USB) from MATLAB

Software available from
https://www.crcpress.com/9781138589940

\}

serial. println("SCAN")
delay(100)
fprintf(s,'SCAN?') ; fscanf(s); Bfield=zeros(1,150);
for $i=1: 150$
r $i=1: 150 \quad \%$ loop over the data points end
\% read the "SCAN" echoed
ing to double
\% $0.18 \mathrm{~mm} /$ motor step
digitalWrite(3,HIGH)
for (int $i=0 ; i<150 ; i++$) (
steps=-1; mystepper.step(steps);
float $B=1 e-4^{\star}\left(5.0^{\star}\right.$ analogRead (1)/1023-2.4)/1.3e-3;
Serial.println(B,4);
Arduino
ple=0.18*(0:149)
MATLAB

UPPSALA UNIVERSITET

Magnet measurements with a rotating coil

- Rotating coil generates a voltage and the harmonics give the multipoles.

Alignment

-How do you do it?

- Magnets on tables
- Fiducialization to pods
- Triangulation
- How well can you do it?
- 0.2-0.3 mm OK

Photo: R. Ruber, CTF3-TBTS

- <0.1 mm increasingly more difficult
- more difficult in large installations
- Sub-micron for linear colliders \rightarrow beam-based

UPPSALA

 UNIVERSITET
Beam Position Monitor

Find offsets with K-modulation

 UNIVERSITET- BPM+Quadrupole are often mounted on the same support

- Modulate focal length f of quadrupole
- Kick from quadrupole $\Theta=x_{\text {offset }} / f(\omega)$ is also modulated
- Observe on BPM2 and minimize signal by moving beam with a bump \rightarrow quadrupole center
- Reading of BPM1 gives BPM1 offset rel. to quadrupole

Summary

- Accelerators
- Iron-dominated magnets
- Current-dominated magnets
- Permanent magnets
- Magnetic measurements

- Alignment

More fun courses...

- 1FA330: Accelerator physics and Technology
- 1FA362: Permanent magnets
- 1FA348: Accelerators and Detectors (MJ++)
- 1FA361: Physics and Finance
- 1FA589: Optics and Photonics (VG)
-1FA349: Sensor to Report

[^0]: 210519, V. Ziemann

