

UNIVERSITET

Accelerators and Magnets 2

Volker Ziemann, FREIA

Last time:

- * Accelerators: LHC, MAX IV, ...
- * Iron dominated magnets
- * Superconducting magnets

This time:

- * Permanent magnets
- * Magnetic measurements
- * Alignment

210519, V. Ziemann https://cern.ch/ziemann

Accelerators and Magnets 2

Today's roadmap

- Remember the multipoles
- Permanent magnet
 - material
 - multipole magnets
 - undulators
 - solenoids
- Magnetic measurements
- Alignment of magnets

m: magnitude $\sim r^{m-1}$, angle $\sim (m-1)\varphi$

Accelerators and Magnets 2

m=tumble factor (varvtal)

UPPSALA UNIVERSITET

Permanent magnet material

- Magnets with large remanent field Br
 - SmCo (Br~1T), NdFe (Br~1.4T)
- Transparent to external magnetic fields
 - relative permeability $\mu_r \sim 1$
- Manufacture
 - Heat powder mixture to melt and rapidly cool
 - Grind to make powder, expose to strong field \rightarrow aligns spins
 - *Sintering:* heat and compress
 - Expose to even stronger field (imprints field \rightarrow easy axis)

UPPSALA How do they behave?

Calculate field of several PM as the **superposition** of the individual fields.

from: www.uge-one.com

Like

- * a **flux-pump** for field lines
- * a **coil** around the surface carrying a very large current
- * many many **small dipoles**, all aligned
- * empty space (**transparent** to external magnetic fields)

PM dipoles

How much multipole does each small cube contribute?

- integrate/sum over all small dipoles

$$\underline{B}^*(\hat{z}) = \sum_{m=0}^{\infty} \left[\frac{m+1}{2\pi} \int_{\Omega} \frac{\underline{B}_r}{z^{m+2}} dx dy \right] \hat{z}^m$$

∫ ← Permanent magnet material

Easy

Cubes are easier to find than wedges - little more algebra with the integrals

Region with dipole field Easy axis Easy

Permanent magnet material

210519, V. Ziemann

Accelerators and Magnets 2

Magnetic field can be calculated entirely analytically! (continuous, wedges, cubes)

6

PM quadrupoles

Mark cubes and place with tumble factor m=2 in 3D printed frame

PM cubes pump flux lines around loops that create the field for the beam in the center.

Also analytically calculated fields!

PM undulators

UPPSALA UNIVERSITET

Speciality magnets to produce synchrotron radiation

Make assembly larger and larger, while maintaining the size of the cubes

PM solenoids

Axial magnets

00000000

<u> ୪୪୪୪୪୪୪୪</u>୪

On-axis field can be calculated analytically (inner coil+outer coil)

$$B(z) = \frac{B_{\rm r}}{2} \left[\left(\frac{z+l}{\sqrt{(z+l)^2 + R_2^2}} - \frac{z-l}{\sqrt{(z-l)^2 + R_2^2}} \right) - \left(\frac{z+l}{\sqrt{(z+l)^2 + R_1^2}} - \frac{z-l}{\sqrt{(z-l)^2 + R_1^2}} \right) \right]$$

210519, V. Ziemann

Accelerators and Magnets 2

Radial magnets

Radial magnets

- Easy axis points 'inwards'

Axial magnets

- Easy axis points 'forwards' 9

UPPSALA UNIVERSITET

Magnetic measurements with a Hall sensor

- Magnetic field measurements
 - Pass current / through semi-conductor (left-to-right)
 - Perpendicular magnetic field B deflects charge carriers to upper and lower contacts
 - Charges accumulate and create electric field E to balance the magnetic deflection
 - $-U_h=Ed$
 - A1324
 - V_c,GND, U_h

• 50 mV/mT 210519, V. Ziemann

UPPSALA UNIVERSITET

Measurement rig

(conceptual)

Frame from an old CD drive with stepper motor driven by an Arduino.

Control via RS-232 USB) from MATLAB

Software available from https://www.crcpress.com/9781138589940

Magnet measurements with a rotating coil

• Rotating coil generates a voltage and the harmonics give the multipoles.

Accelerators and Magnets 2

Works like a bicycle dynamo

Alignment

- How do you do it?
 - Magnets on tables
 - Fiducialization to pods
 - Triangulation
- How well can you do it?
 - 0.2-0.3 mm OK

Photo: R. Ruber, CTF3-TBTS

- <0.1 mm increasingly more difficult
- more difficult in large installations
- \bullet Sub-micron for linear colliders \rightarrow beam-based

UPPSALA UNIVERSITET

Find offsets with K-modulation

UPPSALA UNIVERSITET

> BPM+Quadrupole are often mounted on the same support

- Modulate focal length f of quadrupole
 - Kick from quadrupole $\Theta = x_{offset}/f(\omega)$ is also modulated
 - Observe on BPM2 and minimize signal by moving beam with a bump \rightarrow quadrupole center
 - Reading of BPM1 gives BPM1 offset rel. to quadrupole

Summary

- Accelerators
- Iron-dominated magnets
- Current-dominated magnets
- Permanent magnets
- Magnetic measurements
- Alignment

17

UPPSALA UNIVERSITET

More fun courses...

... brought to you by FREIA

- 1FA330: Accelerator physics and Technology
- 1FA362: Permanent magnets
- 1FA348: Accelerators and Detectors (MJ++)
- 1FA361: Physics and Finance
- 1FA589: Optics and Photonics (VG)
- 1FA349: Sensor to Report

