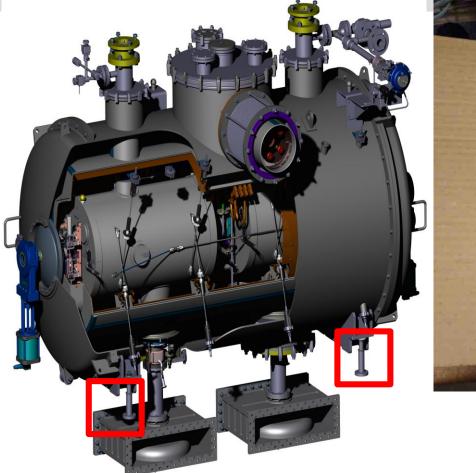


ESS weekly meeting (W17)

A. Miyazaki et al.

W17 2021			next CM	CM under test	previous CM
VV			СМ03	CM05	
ТНО	22-apr	m	reception	-4K cooling	discussion
	zz-api	а			on feets
FRI	23-apr	3-apr thermalization at		4K filling, cavity alignment,	fixed by
	25-api	а	FREIA	coupler cold conditioning	Guillaume
SAT	24-apr			thermalization	
SUN	25-apr				
			open, shock sensor,	2K pumping, f vs P	
MON	26-apr	m	LEMO, reception test	measument (VNA)	
		а	VNA measurement	RF cable calibration	
TUE	27-apr	m	arc detector, e-pickup	CTS, piezo tests, static heat	
		а		load measurement	
	28-apr	m		static heat load, LLRF interlock	
WED 28-apr		а		setup, cavity conditioning	



W17 2021			next CM	CM under test	previous CM
VV	17 2021		СМ03	CM05	CM02
тни	22-apr	m	reception	4K cooling	discussion
	zz-api	а			on feets
FRI	23-apr	23-apr m thermalization at 4K filling, cavity al		4K filling, cavity alignment,	fixed by
	25-api	а	FREIA	coupler cold conditioning	Guillaume
SAT	24-apr			thermalization	
SUN	25-apr				
			open, shock sensor,	2K pumping, f vs P	
MON	26-apr	m	LEMO, reception test	measument (VNA)	
		a VNA measurement		RF cable calibration	
тис	TUE 27-apr		arc detector, e-pickup	CTS, piezo tests, static heat	
				load measurement	
	28-2pr	m		static heat load, LLRF interlock	
	WED 28-apr			setup, cavity conditioning	

CM02 received by ESS: feet

- Adjustable feet are necessary to unload CM from the box
- Two set of feet are used by FREIA for the test and CM02 was without the set
- A set of feet are shipped with jumper bellows for each CM
- Solution: Guillaume sends spare feets for CM02 directly to ESS and we will send a set of CM+feet+jumper for CM05 and CM03

CM02 received by ESS: alignment

Felix asked:

To check the **alignment of the string after transport**, and later **also in the tunnel** we would like to apply the same procedure than you do at FREIA.

Akira answered:

We do not and/or cannot perform such tests because our measurement is **only relative** to compare before/after cooling down

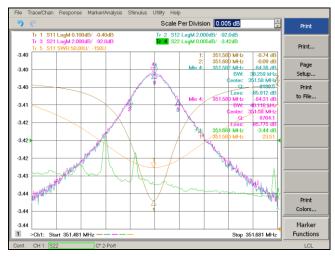
Guillaume, does Felix need to this measurement as he proposed, or is it unnecessary?



	W17 2021		next CM	CM under test	previous CM
VV	17 2021		СМ03	СМ05	CM02
тни	22-apr	m	reception	4K cooling	discussion
	zz-api	а			on feets
FRI	23-apr	m	thermalization at	4K filling, cavity alignment,	fixed by
	25-api	а	FREIA	coupler cold conditioning	Guillaume
SAT	24-apr			thermalization	
SUN	25-apr				
			open, shock sensor,	2K pumping, f vs P	
MON	26-apr	m	LEMO, reception test	measument (VNA)	
		а	VNA measurement	RF cable calibration	
тис	TUE 27-apr		arc detector, e-pickup	CTS, piezo tests, static heat	
				load measurement	
	28_2pr	m		static heat load, LLRF interlock	
WED 28-apr		а		setup, cavity conditioning	

CM03 reception and preparation

VACUUM GAUGE OF CAVITY STRING AT UU						
Date	Time	Pfeiffer TPG2020 (mbar)	Limit	Name of controller		
2021-04-26	08:45	3,70E-03	1,00E-01	A.Miyazaki		
2021-04-27	08:08	3,80E-03	1,00E-01	E. Pehlivan		
2021-04-28	08:03	3,90E-03	1,00E-01	E. Pehlivan		
2021-04-29	08:15	3,90E-03	1,00E-01	E. Pehlivan		


- No major shocks by the new transporter
- shock sensors returned to Orsay
- Distribute workloads to all colleagues to compensate Han Li 29/04/2021 A. Miyazaki, ESS meeting W17

CM03 cavities at warm

CAV IN

CAV OUT

29/04/2021 A. Miyazaki, ESS meeting W17

<u>At Orsay</u>				
2021-	03-26			
HP	HP			
19,4	19,5			
1,90E-03	1,90E-03			
PA	PA			
PA	PA			
	ents @ T=300K			
before testing / [measu				
	ment]			
Cavity IN	Cavity OUT			
DSPK09	DSPK12			
CPL06	CPL26			
DWT02	DWT19			
-0,1161	-0,122			
-0,7808	-0,8074			
-80,671	-80,507			
351,578	351,570			
352,154	352,142			
0,000	-0,004			
39,31	40,06			
8942	8770			
-1,83	-1,84			
13824-010-05	13824-010-06			
-3,55	-3,43			
3,00E+11	3,00E+11			
2,20E+11	2,10E+11			
Results (und	der coupled)			
-0,66	-0,69			
-78,8	-78,7			
2,43E+05	2,31E+05			
2,04E+05	2,10E+05			
1,01E+11	9,93E+10			
9284	9116			
132	129			

Our measurement

202	1-04-26					
	gilent					
	<u> </u>					
3,7	0E-03					
	PA					
	PA					
	nents @ T=300K delivery					
Cavity IN	Cavity OUT					
DSPK09	DSPK12					
CPL06	CPL26					
DWT02	DWT19					
-0,09	-0,07					
-0,74	-0,75					
-84,31	-83,6					
351,58	351,573					
00.40	00.40					
39,19	39,19					
8977	8977					
Results (ur	nder coupled)					
-0,7	-0,7					
-84,3	-83,6					
2,49E+05	2,38E+05					
3,46E+11	3,07E+11					
9313	9328					
132	132					
102	132 132					

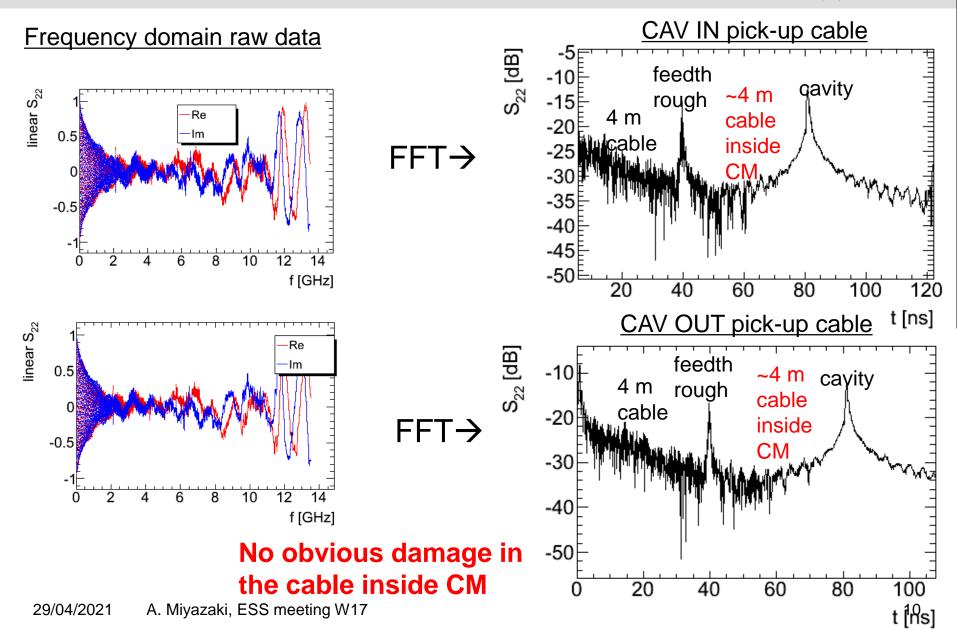
CM03 sensors

. . .

.....

\bigwedge	\bigwedge	FREID	<u>`</u>
	JV	-	-

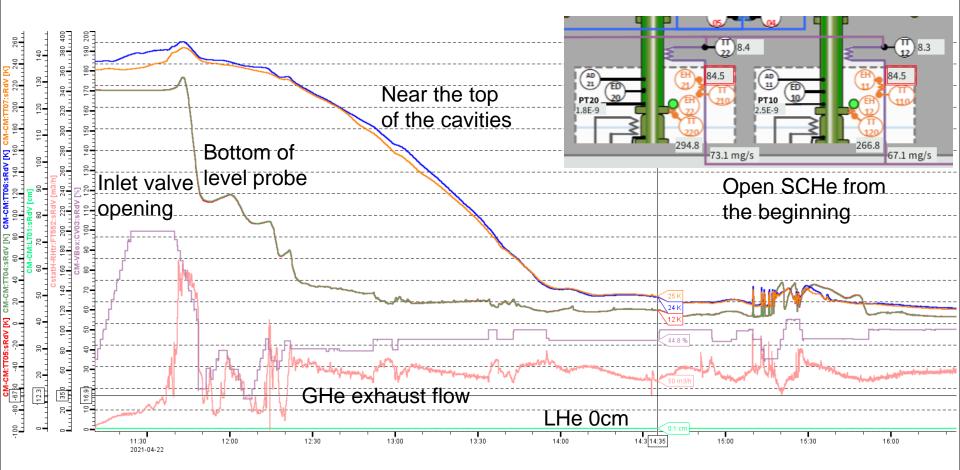
To be uploaded to Atrium


Ca	Cables verification CM0		3 at IJCLab	ab v1		_	Cables verification CM03 at UU			v1	
Socket asse	embly		Verified by: JC. Roux			Sock	ket assembly		Verif	ied by:	
Socket name	PID name	Electrical value (Ω) (before shipment)	C/NC			Socket	name	PID name	Electrical value (Ω) (before shipment)	C/I	NC
	TT04	66,27	C					TT04	66,25	C	
	TT05	66,42	С					TT05	66,35	C	
	TT06	63,58	С					TT06	66	C	
	TT07	66,01	С					TT07	63,65	C	
	TT08	62,51	С					TT08	62,6	C	
LC01	TT <i>0</i> 9	71,25	C			LC	·04	TT <i>0</i> 9	71,4	C	
LOUI	TT10	108,55	C			20	01	TT10	106,6	c	
	TT <i>11</i>	108,6	С					TT11	106,9	C	
	TT12	69,44	С					TT12	69,5	C	
	TT20	108,37	C				TT 20	106,8	C		
	TT21	108,43	C			-		TT21	106,45	C	
	TT22	64,23	C					TT22	64,35	c	
PT Coupler	TT120	108,50	C			PT Coupler	TT120	107,87	c		
FI Couplei	TT220	108,51	C			FIUU	uhiei	TT220	107,85	c	
	EH01	84,17 Ω	C					EH01	84.6 Ω	c	
LC02	EH02	84,74 Ω	C			LC02	EH02	83.9 Ω	C		
LUUZ	EH10	82,54 Ω	C			LU	02	EH10	82.5 Ω	С	
	EH20	84,74 Ω	C					EH20	82.4 Ω	C	
	SM10	2,46 / 2,49 Ω	C					SM10	2.3 / 2.3 Ω	С	;
LC03	LS10	2,14 Ω	C			10	•0.2	LS10	2Ω	C	
LC03	SM20	2,51 / 2,40 Ω	C			LC03		SM20	2.5 / 2.6 Ω	C	
	LS20	2 Ω	C					LS20	2.1 Ω	C	
LC07	LT01	366,70 Ω	C			LC	07	LT01	363,95	c	;
LGUI	LT02	369,55 Ω	C			LU	07	LT02	367,55	С	;
Socket name	PID name	Electrical value (μF) (before shipment)	C/NC			Socket	name	PID name	Electrical value (µF) (before shipment)	C/I	VC
	PZ10	13,58 µ	C					PZ10	14.68 µ	C	;
1.004	PZ11	13,25 µ	С					PZ11	14.53 µ	C	;
LC04	PZ20	13, 20 μ	С			LC	-04	PZ20	14.35 µ	С	:
	PZ21	13,52 μ	С					PZ21	14.52 µ	С	

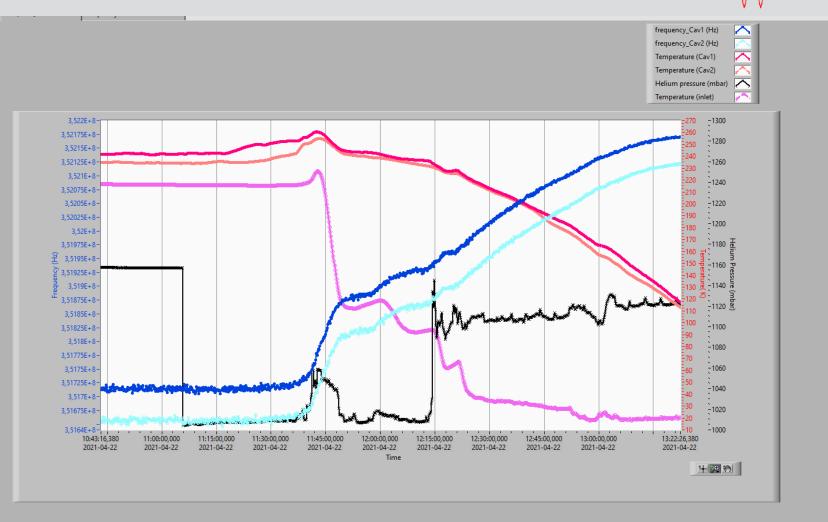
		Before shipment to UU						After delivery @ UU			
	Identification number Thermocoax assembled on Double Wall Cavity string n° Coupler's serial number Cavity number Factory measured values Measured values cryomodule values (Ω) Measured values 0 <th>C/NC</th> <th></th>							C/NC			
	AMG59/25	2	3	6	09 (IN)	2,81	3	С	2,7	С	
N17	AMG59/04	19	3	26	12 (OUT)	2,53	2,6	С	2,4	С	9

29/04/2021 A. Miyazaki, ESS meeting W

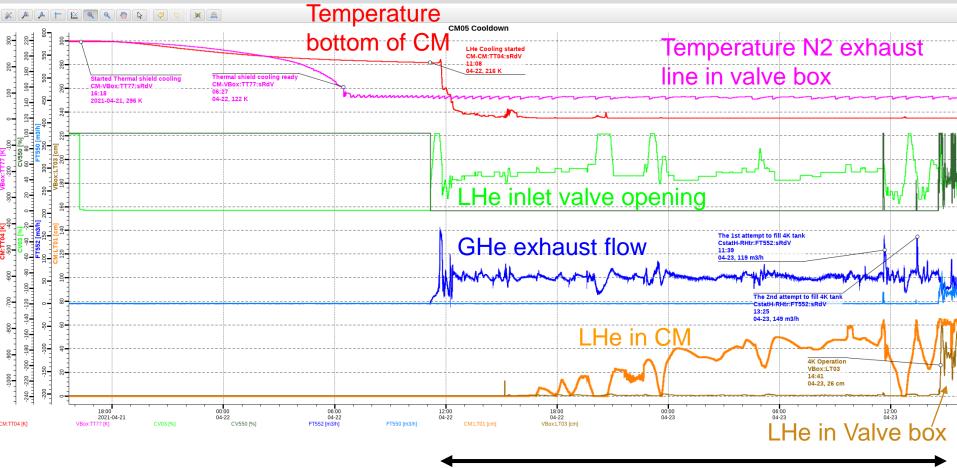
CM03: Time Domain Analysis of pick-up cable



	W17 2021		next CM	CM under test	previous CM
VV	17 2021		СМ03	СМ05	СМ02
THU	22-apr	m	reception	4K cooling	discussion
	zz-api	а			on feets
FRI	23-apr	m	thermalization at	4K filling, cavity alignment,	fixed by
	25-api	а	FREIA	coupler cold conditioning	Guillaume
SAT	24-apr		FNLIA	thermalization	
SUN	25-apr				
			open, shock sensor,	2K pumping, f vs P	
MON	26-apr	m	LEMO, reception test	measument (VNA)	
		а	VNA measurement	RF cable calibration	
	TUE 27-apr		arc detector, e-pickup	CTS, piezo tests, static heat	
				load measurement	
	28 apr	m		static heat load, LLRF interlock	
	WED 28-apr			setup, cavity conditioning	

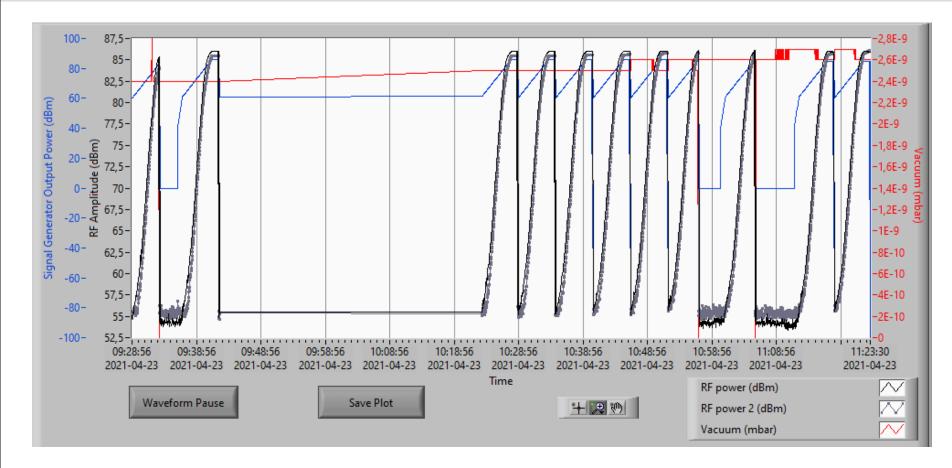

4K cooling

150 K (13:04h) < TT06 and TT07 < 50 K (13:48) → rate=2.27 K/min



Frequency increase by thermal contraction +450 kHz

29/04/2021 A. Miyazaki, ESS meeting W17

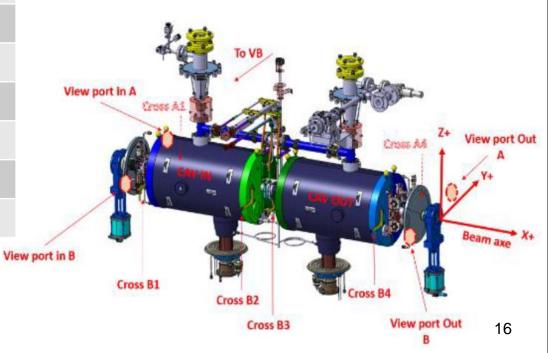

Struggle around 27 hours

4K operation suddenly achieved by Konrad's 3^{rd} attempt \rightarrow Is 27 hours intrinsic or any black magic in parameters?

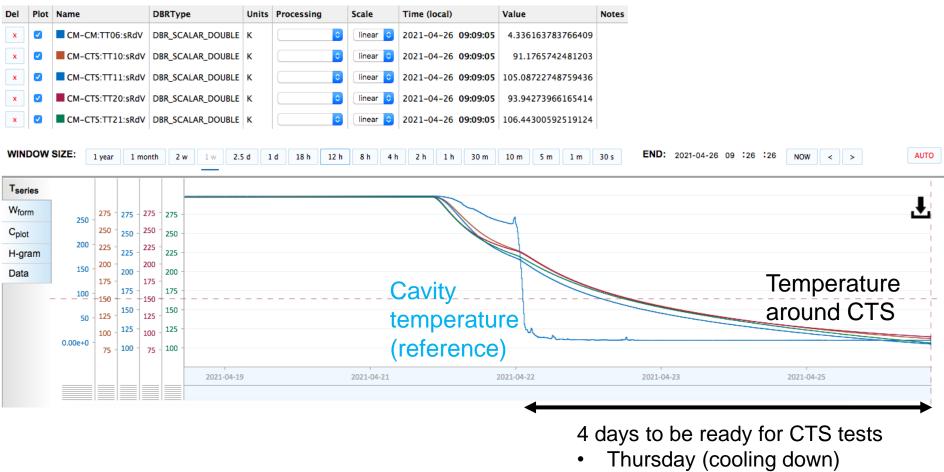
29/04/2021 A. Miyazaki, ESS meeting W17

Coupler cold conditioning (parallel to 4K filling)

- 2 hours in total
- 30 min intervention to optimize ceramic windows temperature because heater current was not sufficient to regulate their temperature above 280K

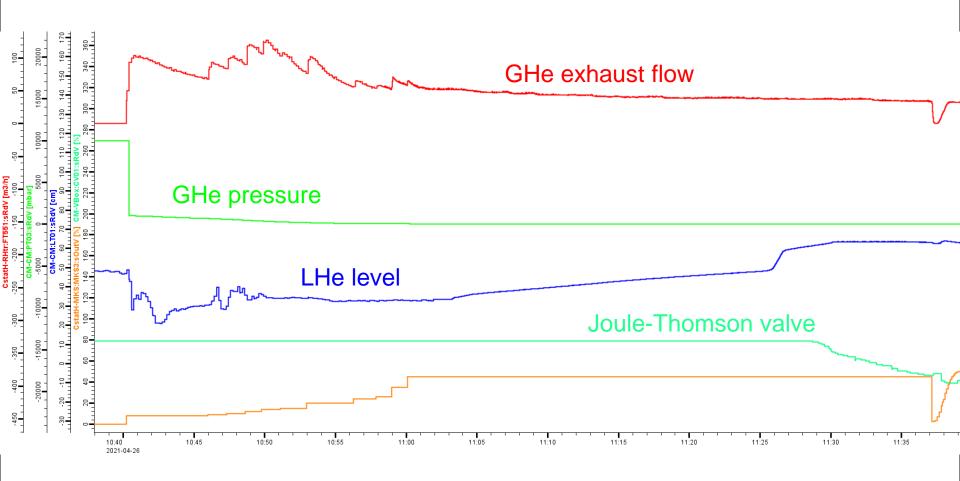


Cavity shrinkage measurement


T (K)	Side B	Y (mm)	Z (mm)
	Cross B1	1.00 (red)	0.01 (red)
	Cross B2	1.10 (red)	0.59 (black)
300	Cross B3	0.13 (red)	>1.2 (red)
	Cross B4	1.20 (red)	0.05 (red)
	Cross B1	0.22 (red)	0.12 (red)
4.0	Cross B2	0.18 (red)	0.25 (black)
4.2	Cross B3	1.15 (black)	>1.2 (red)
	Cross B4	0.49 (red)	0.67 (red)
	Cross B1	+0.78	+0.11
	Cross B2	+0.92	+0.34
motion	Cross B3	+1.02	No data
	Cross B4	+0.71	+0.62

Horizontal uniform shrinkage 0.86 +/- 0.24 mm (RMS)

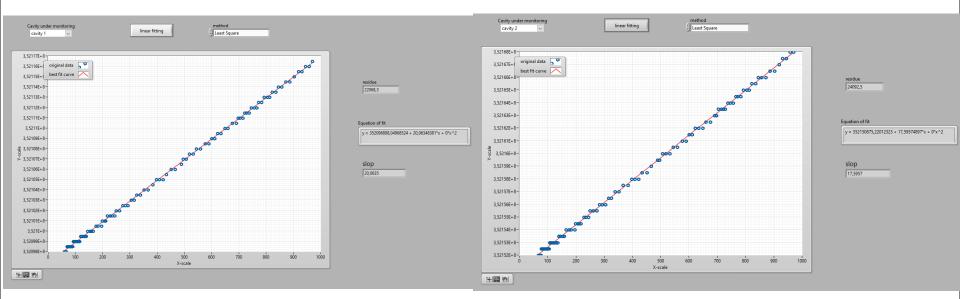
Thermalization of CTS over weekend


- Friday (filling)
- Saturday
- Sunday

Monday 2K pumping

2K pumping

1h to reach 31 mbar



frequency vs p

<u>CAV IN</u>

f/p = 20.06 Hz/mbar

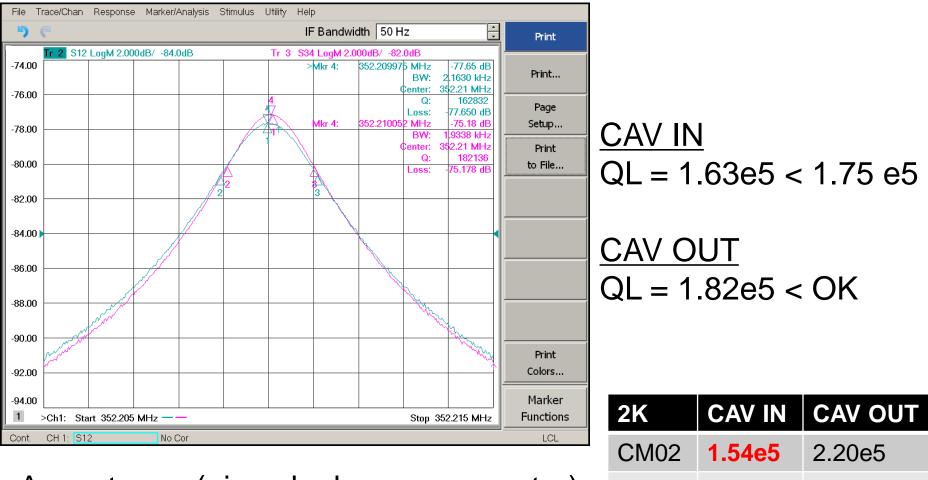
f/p = 17.60 Hz/mbar

Both are on spec (<20 Hz/mbar)

RF cable calibration

<u>CAV IN</u>

Atten_fwd = 81.30 dBAtten_ rfl = 81.55 dBAtten_trans = 17.46 dB


Under debate

 $\frac{\text{CAV OUT}}{\text{Atten_fwd} = 81.16 \text{ dB}}$ $\frac{\text{Atten_rfl} = 81.25 \text{ dB}}{\text{Atten_trans} = 17.65 \text{ dB}}$

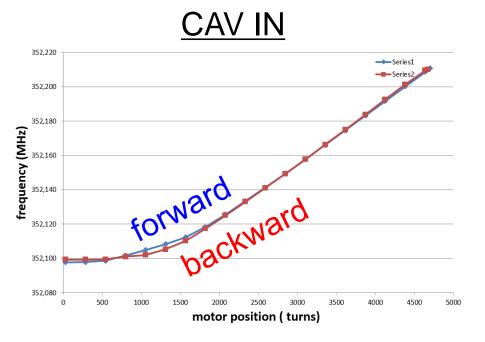
We are recalibrating the cable to be 100% of the accelerating field value

CM04

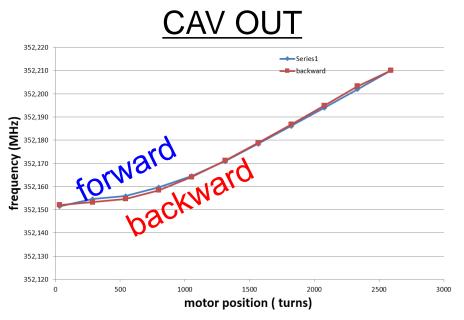
CM05

1.76e5

1.63e5


Acceptance (given by beam parameter) QL = 1.75e5 – 2.85e5

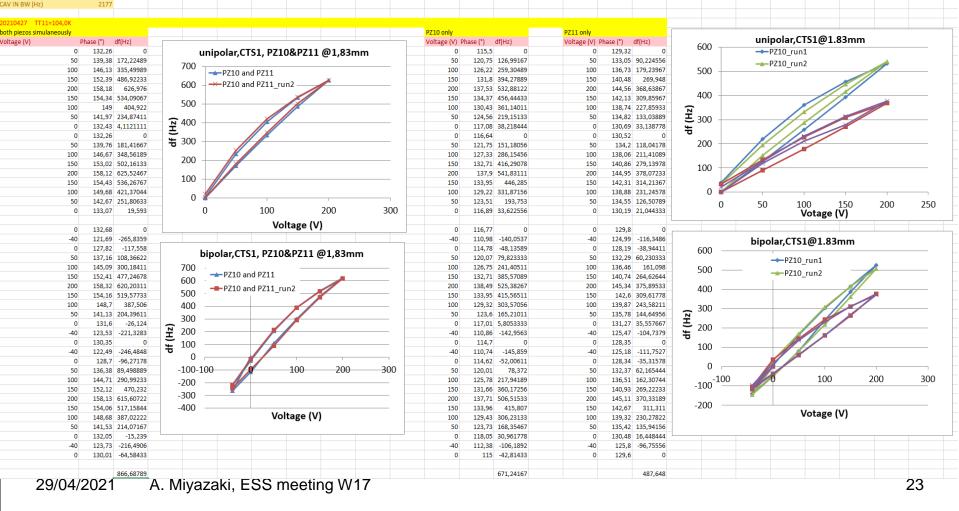
1.55e5


1.82e5

- Reach target frequency 352.21 MHz
- +112.3 kHz tuning
- 4670 turns from limit switch
- Motor position1.824 mm
- Sensitivity in linear zone: 85kHz/mm

- Reach target frequency 352.21 MHz
- +58.5 kHz tuning
- 2590 turns from limit switch
- Motor position1.012 mm
- Sensitivity in linear zone: 80 kHz/mm

Motor current 0.6A \rightarrow OK



Piezo tests: CAV IN

[PZ10 + PZ11] unipolar: 630 Hz bipolar: 866 Hz

[PZ10] unipolar: 540 Hz bipolar: 670 Hz

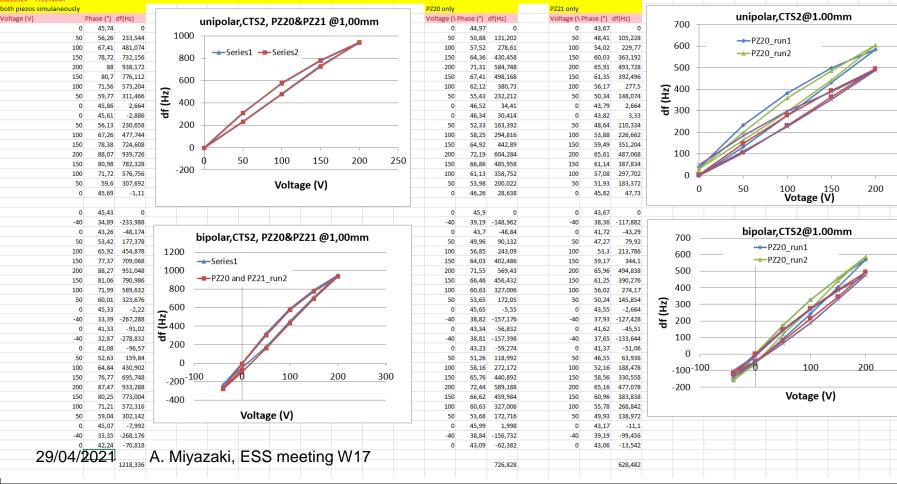
[PZ11] unipolar: 370 Hz bipolar: 487 Hz

Piezo tests: CAV OUT

[PZ20 + PZ21] unipolar: 940 Hz bipolar: 1218 cold Becold B

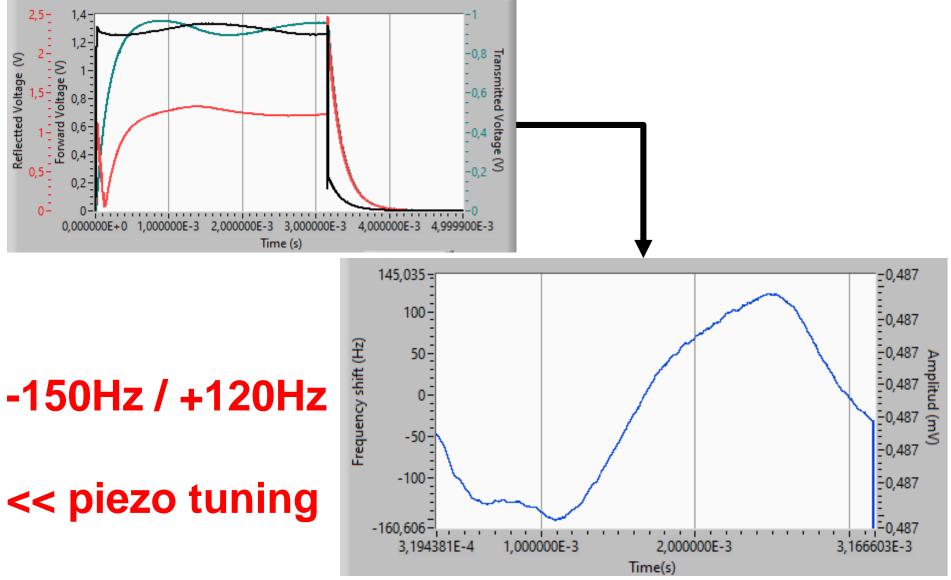
[PZ20] unipolar: 585 Hz bipolar: 720 Hz

[PZ21] unipolar: 490 Hz bipolar: 628 Hz

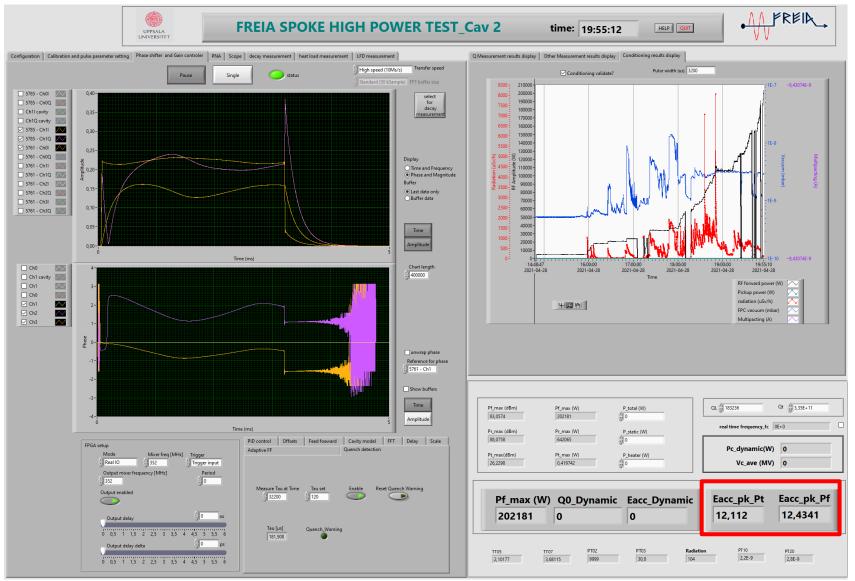

FREIR

250

300


24

0210224 TT21-104K


CAV OUT: Lorentz force detuning @ 9MV/m FREIR_

CAV OUT reached 12MV/m

^{29/0}No¹field^yemission (minor X-rays after MP conditioning) ²⁶

<u>Test 1 (during CTS tests)</u> Measured from 09:07 to 09:11: FT551= 14.80 m3/h (std dev 0.35 m3/h) PT03_min= 30.40 mbar PT03_max= 32.30 mbar LT01_min= 48.5 cm LT01_min= 48.5 cm LT01_max= 58.97 cm CV551=17%

CV03=29%

Static heat load: 15,84 (37) W

<u>Test 2 (CTS fully engaged)</u> Measured from 14:11 to 14:16 FT551 = 13,7 m3/h (Std.dev. 0.24m3/h) PT03 Min: 30.2 mBar PT03 Max: 30.8 mBar LT01 Min: 58,92 cm LT01 Max: 60,62 cm CV551 17% CV03 30%

Static heat load: 14,66 (25) W

 Test 3 (CTS fully engaged)

 Measured from 08:31 to 08:34:

 FT551=
 12.47 m3/h (std dev 0.29 m3/h)

 PT03_min= 30.90 mbar

 PT03_max= 32.40 mbar

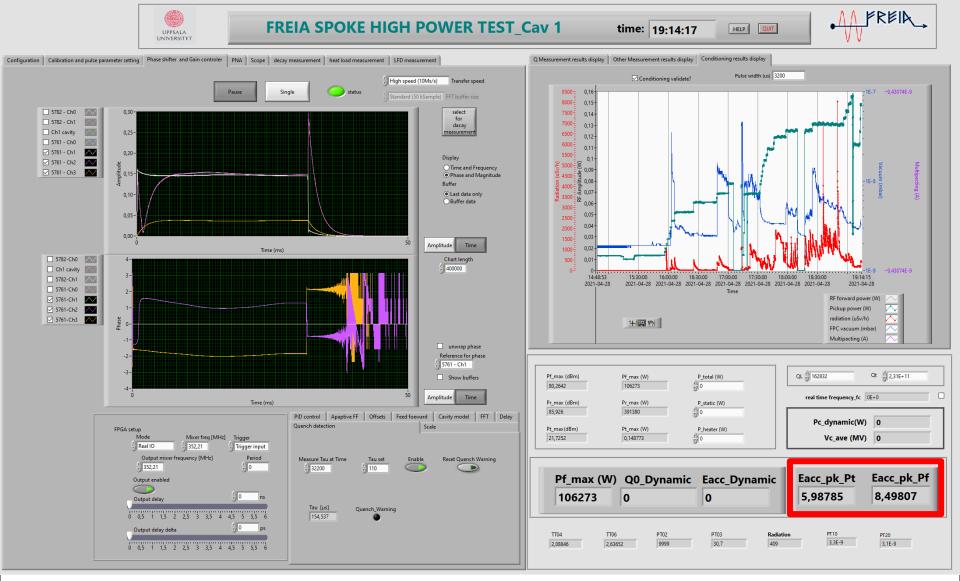
 LT01_min= 60.58 cm

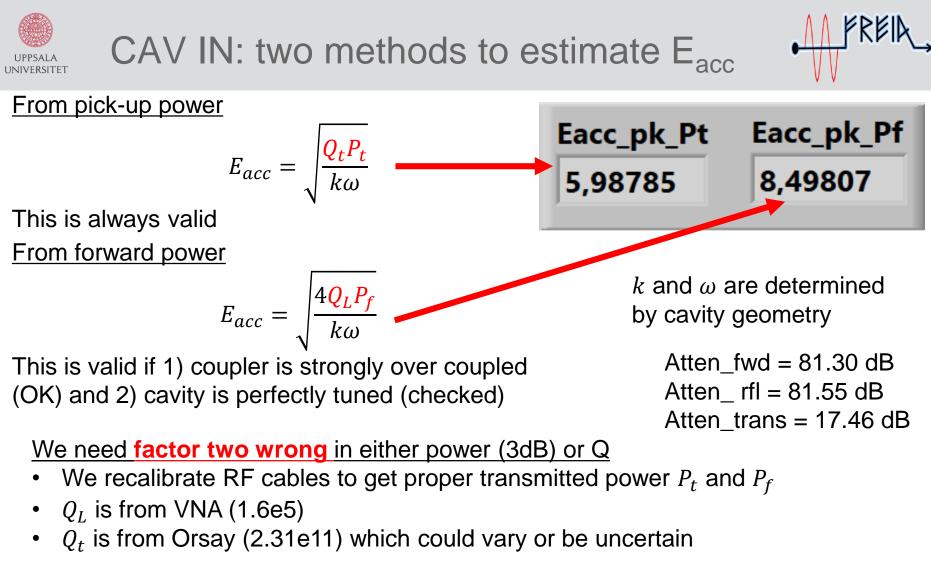
 LT01_max= 61.58 cm

 CV551=17%

 CV03=30%

 Static heat load: 13,34 (31) W


→ 13.3-14.7 W OK


29/04/2021 A. Miyazaki, ESS meeting W17

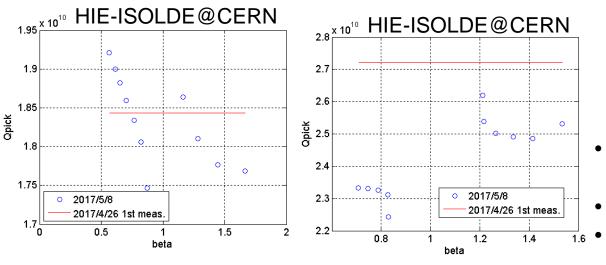
Doubt in CAV IN calibration

We need to study the source of errors before we proceed to the next step

Potential issue pick-up antenna Q_t could get loose by transportation or cooling down

$$Q_{\rm L} = \omega \tau, \tag{A.1}$$

IOP Publishing Supercond. Sci. Technol. 32 (2019) 025002 (10pp


Superconductor Science and Technology

Determination of the Bardeen–Cooper– Schrieffer material parameters of the HIE-ISOLDE superconducting resonator

A Miyazaki^{1,2} and W Venturini Delsolaro¹

¹CERN, Switzerland ²University of Manchester, United Kingdom

- The typical method (David's method at Orsay is the same) to evaluate Q_t in vertical tests contains source of error
- Because of phase mismatch and standing-wave, estimated Q_t depends on coupling coefficient $\beta = Q_0/Q_{ext}$

29/04/2021 A. Miyazaki, ESS meeting W17

where ω is the angular resonant frequency $\omega = 2\pi f$. With the same configuration as the field-decay measurement, the steady state powers ($P_{\rm f}$, $P_{\rm r}$, $P_{\rm f}$) were measured, and the coupling coefficient was calculated by

$$\beta = \frac{1 \pm \sqrt{P_{\rm r}/P_{\rm f}}}{1 \mp \sqrt{P_{\rm r}/P_{\rm f}}},\tag{A.2}$$

where the upper sign is used for over-coupling, and the lower sign is used for under-coupling case. The power consumption in the cavity P_c is

$$P_{\rm c} = P_{\rm f} - P_{\rm r} - P_{\rm t}. \tag{A.3}$$

The coupling coefficient of the pick-up port $\beta_{\rm pick}$ was also evaluated as

$$\beta_{\rm pick} = \frac{P_{\rm t}}{P_{\rm c}}.\tag{A.4}$$

Then, the cavity quality factor was calculated by

$$Q_0 = Q_{\rm L}(1 + \beta + \beta_{\rm pick}), \tag{A.5}$$

and the quality factor of the pick-up port is given by

$$Q_{\rm pick} = \frac{Q_0 P_{\rm c}}{P_{\rm t}}.\tag{A.6}$$

- Comparing 2K (high β) and 4K (low β) gives some insight
 - Still 30% error is maximum
 - Factor two sounds too much

Plan: W18

W18 2021			next CM	CM under test	previous CM
			СМ03	CM05	СМ02
THU	29-apr	m		RF cable calibration	
		а			
FRI	30-apr	m			
		а			
SAT	01-maj			Valborg	
SUN	02-maj				
MON	03-maj	m	doorknob mounting	CAV IN conditioning	
		а		dynamic heat load measurement	
TUE	04-maj	m			
		а			
WED	05-maj	m		start warming up	
		а			

- When will be the potential arrival of the next next CM (CM06?)?
- CM05 might be ready to ship in the end of W19 (May 13th)
- Reception of the next next CM must be after CM05 shipping