The phenomenological cornucopia of SU(3) exotica

Linda Carpenter Dec 2021

arXiv:2110.1135 with Taylor Murphy and Tim Tait

Exotics Charges Under SU(3)

Some scattered phenomenological examples of fields in various representations

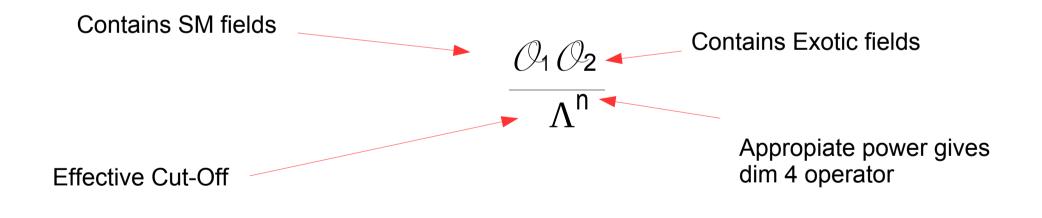
- Scalar Fundamentals: Squarks (supersymmetry)-QCD pair production
- Fermion Octets: Gluions (supersymmetry)-QCD pair production
- Scalar Octets: Monohar Wise(also weak doublets), Sgluons (R-symmetric supersymmetry) Gluon Fusion, QCD pair production
- Sextet Quarks: General Models -QCD pair production

There are many more possible interactions between hypothetical color-charged states and the Standard Model. Some with unusual and distinct collider signatures.

Therefore we attempt a catalogue of possible interactions so that the phenomenology can be systematically explored

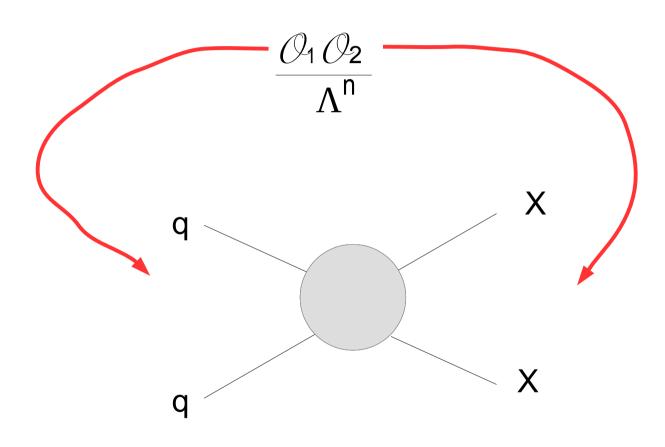
Methodlogical Approach

 Use EFT interactions to catalouge all intereactions between SM and Exotic Sector (Later build out with simplified models)



Interaction Term in Lagrangian

Example Diagram



Explore exotic states in various representations of SU(3)

For any Given type of exotic field attempt to find all effective operators up to a certain dimension in order to sample entire space of phenomenological signatures

First example exotic sextets(spin 0 or spin ½) all effective operators up to dimension 6 (will include a few interesting examples of dimension 7 operators)

Build Operators using new Exotic Fields

 ϕ : spin 0, sextet of SU(3), SU(2) singlet

 ψ : spin ½, sextet of SU(3), SU(2) singlet

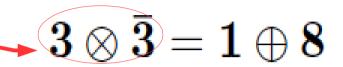
Write down interaction which preserve all symmetries (Lorentz invariance, gauge symmetries of SM, CPT). For gauge invariance allowvarious possibilities for hypercharge.

Color Structure and the Construction of SU(3) singlets

To construct color invariants we use an iterative method exploiting the known tensor products of SU(3)

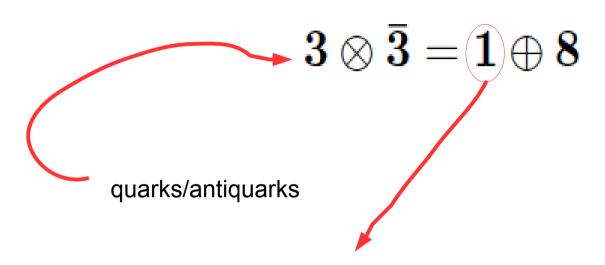
$$egin{aligned} 3 \otimes 3 &= ar{3}_{a} \oplus 6_{s}, \ 3 \otimes ar{3} &= 1 \oplus 8, \ 6 \otimes 3 &= 8 \oplus 10, \ 6 \otimes ar{3} &= 3 \oplus 15, \ 6 \otimes 6 &= ar{6}_{s} \oplus 15_{a} \oplus 15'_{s}, \ 6 \otimes ar{6} &= 1 \oplus 8 \oplus 27, \ 8 \otimes 3 &= 3 \oplus ar{6} \oplus 15, \ 8 \otimes ar{6} &= 3 \oplus ar{6} \oplus 15 \oplus 24, \ 8 \otimes 8 &= 1_{s} \oplus 8_{s} \oplus 8_{a} \oplus 10_{a} \oplus 1\overline{0}_{a} \oplus 27_{s}, \end{aligned}$$

Interpreting Products



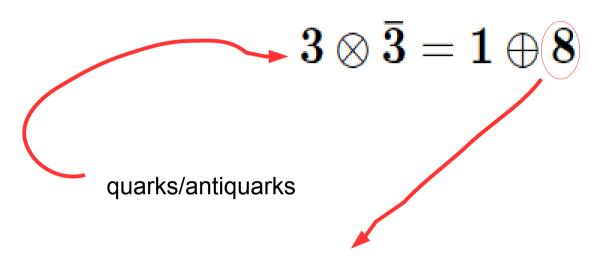
Interpret these as fields in fundamental and antifundamental(quarks/antiquarks)

Interpreting Products



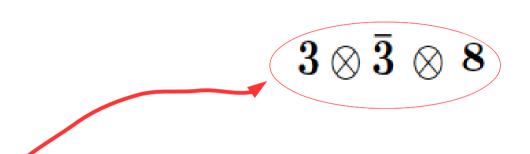
Singlet of SU(3): Higgs,photon,Z,W

Interpreting Products



Octet of SU(3): gluon

Move all fields to left side of product equation to construct a singlet



This is the invariant interacrion term we can write in the Lagrangian

We can use this method to construct all color invariant terms in the Lagrangian that contain the new sextet fields

We use an interactive method to construct color invariants. First we find the operators with three color-charged fields

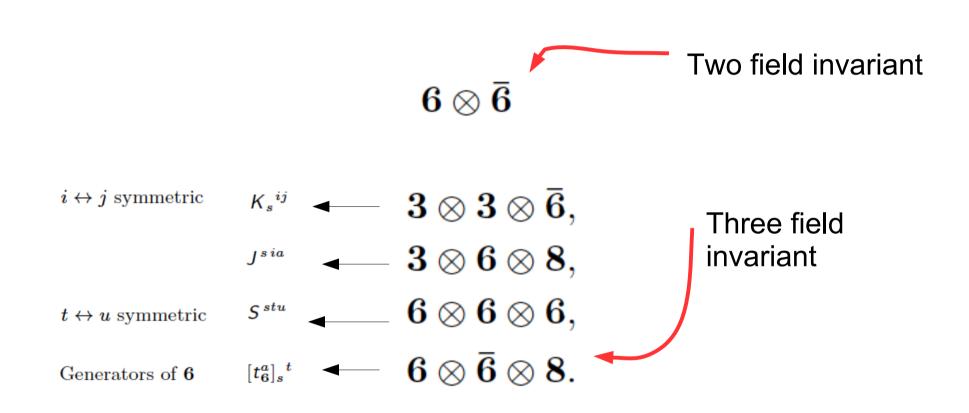
$$egin{aligned} 3 \otimes 3 &= ar{3}_{a} \oplus 6_{s}, \ 3 \otimes ar{3} &= 1 \oplus 8, \ 6 \otimes 3 &= 8 \oplus 10, \ 6 \otimes ar{3} &= 3 \oplus 15, \ 6 \otimes 6 &= ar{6}_{s} \oplus 15_{a} \oplus 15'_{s}, \ 6 \otimes ar{6} &= 1 \oplus 8 \oplus 27, \ 8 \otimes 3 &= 3 \oplus ar{6} \oplus 15, \ 8 \otimes ar{6} &= 3 \oplus ar{6} \oplus 15 \oplus 24, \ 8 \otimes 8 &= 1_{s} \oplus 8_{s} \oplus 8_{a} \oplus 10_{a} \oplus ar{10}_{a} \oplus 27_{s} \end{aligned}$$

We use an interactive method to construct color invariants. First we find the operators with three or fewer color-charged fields

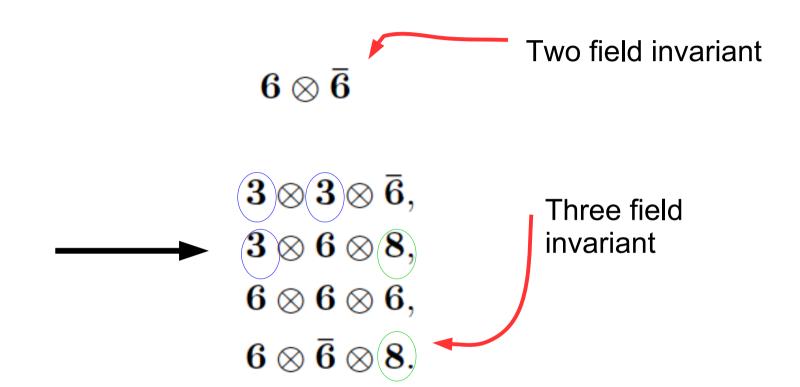
$$3\otimes 3=\bar{3}_a\oplus 6_s, \qquad \text{Identify 6 with sextets} \\ 3\otimes \bar{3}=1\oplus 8, \\ 6\otimes 3=8\oplus 10, \\ 6\otimes \bar{3}=3\oplus 15, \\ 6\otimes \bar{6}=\bar{6}_s\oplus 15_a\oplus 15_s', \\ 6\otimes \bar{6}=1\oplus 8\oplus 27, \\ 8\otimes 3=3\oplus \bar{6}\oplus 15, \\ 8\otimes \bar{6}=3\oplus \bar{6}\oplus 15 \oplus 24, \\ 8\otimes 8=1_s\oplus 8_s\oplus 8_a\oplus 10_a\oplus 1\bar{0}_a\oplus 27_s$$

From 7 products we find 5 distinct invariants

We construct singlets using the proper choice of Clebsch-Gordon coefficients



We now construct interaction in the Lagrangian

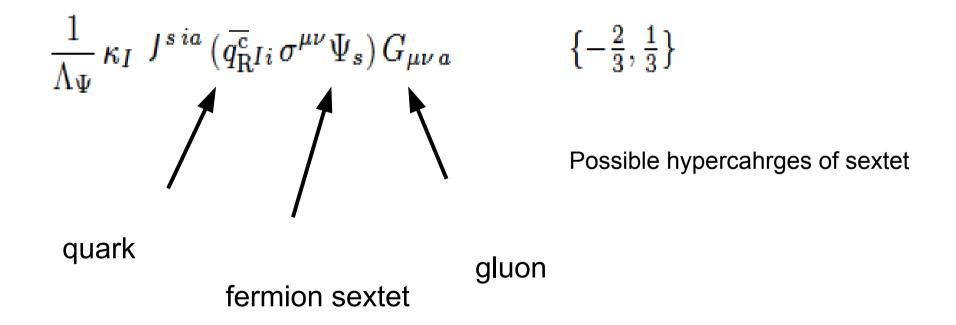


Interpret 3 as quark and 8 as gluon, we make now complete the Lorentz Structure of the operators. We have alrady found some interesting new operators

All operators with this color structure

$oldsymbol{3} \otimes oldsymbol{6} \otimes oldsymbol{8}$		T	Y		
	Generic	Specific Coupling		L	Y
Scalar Φ_s	$(q\ell)\Phi G$	$J^{sia}\Phi_s(\overline{q^{\mathrm{c}}_{\mathrm{R}Ii}}\sigma^{\mu\nu}\ell_{\mathrm{R}X})G_{\mu\nua}$	$\frac{1}{\Lambda_{\Phi}^2} \lambda_I^X$	-1	$\left\{\frac{1}{3}, \frac{4}{3}\right\}$
	$(ar{\ell}q)\Phi G$	$J^{sia}\Phi_s(ar{L}_{\mathrm{L}X}H\sigma^{\mu u}q_{\mathrm{R}Ii})G_{\mu ua}$	$rac{1}{\Lambda_{\Phi}^3} \lambda_I^X$	1	$\left\{-\frac{5}{3}, -\frac{2}{3}\right\}$
$Dirac \ \Psi_s$	(a)I()C	$J^{sia}(\overline{q^{ m c}_{{ m R}Ii}}\sigma^{\mu u}\Psi_s)G_{\mu ua}$	$rac{1}{\Lambda_\Psi} \kappa_I$		
	$(q\Psi)G$	$J^{sia}\left(\overline{q_{\mathrm{R}}^{\mathrm{c}}}_{Ii}\Psi_{s} ight)B^{\mu u}G_{\mu ua}$	1 KI	0	$\left\{-\frac{2}{3}, \frac{1}{3}\right\}$
	$(q\Psi) H ^2G$	$J^{sia}(\overline{q^{\mathrm{c}}_{\mathrm{R}}}_{Ii}\sigma^{\mu u}\Psi_{s}) H ^{2}G_{\mu ua}$	$\frac{1}{\Lambda_{\Psi}^3} \kappa_I$		

We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is



We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is

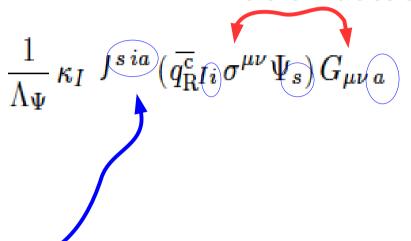
Lorentz indicies contracted

$$\frac{1}{\Lambda_{\Psi}} \kappa_{I} \int^{s \, ia} \left(\overline{q_{\mathrm{R}}^{\mathrm{c}}}_{Ii} \, \sigma^{\mu\nu} \Psi_{s} \right) G_{\mu\nu \, a} \qquad \left\{ -\frac{2}{3}, \frac{1}{3} \right\}$$

Possible hypercahrges of sextet

We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is

Lorentz indicies contracted



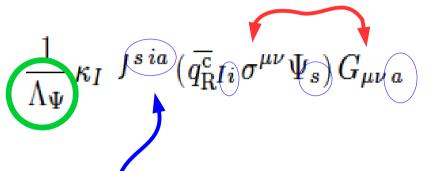
$$\left\{-\frac{2}{3}, \frac{1}{3}\right\}$$

Possible hypercahrges of sextet

Color indicies contracted

We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is

Lorentz indicies contracted



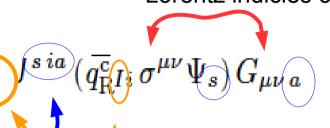
$$\left\{-\frac{2}{3}, \frac{1}{3}\right\}$$

Possible hypercahrges of sextet

Color indicies contracted

Dimension 5 operator

We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is



$$\left\{-\frac{2}{3},\frac{1}{3}\right\}$$

Possible hypercahrges of sextet

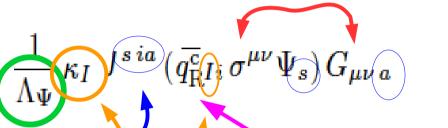
Color indicies contracted

Dimension 5 operator

The coupling constant to various flavors of Quark may be independent

$\mathbf{3}\otimes\mathbf{6}\otimes\mathbf{8}$

We interpret this as an interaction between a quark, gluon and sextet the lowest dimesion operators is



$$\left\{-\frac{2}{3}, \frac{1}{3}\right\}$$

Possible hypercahrges of sextet

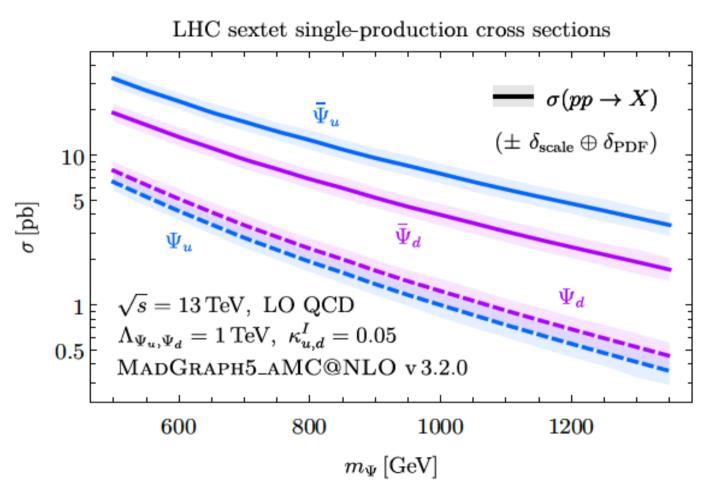
Color indicies contracted

Sextet had opposite hypercharge as the up/down type quarks

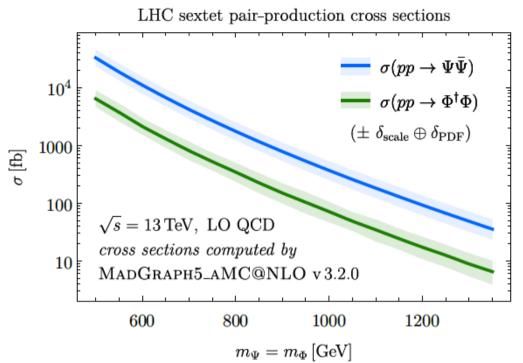
Dimension 5 operator

The coupling constant to various flavors of Quark may be independent

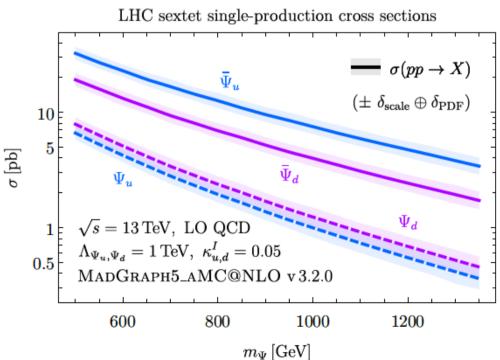
This operator leads to single sextet production through quark-gluon fusion

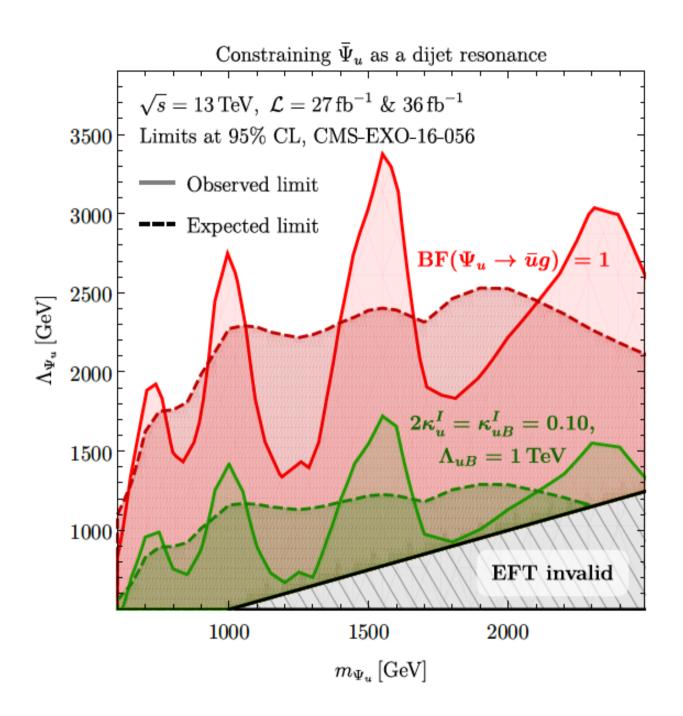


Differential quark-antiquarks PDF's ensure different production cross section for Upand down type sextets between sextets and anti-sextets

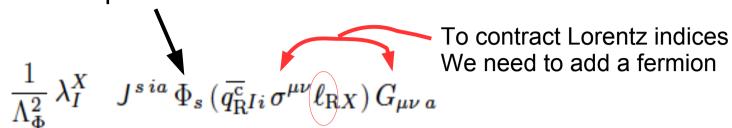


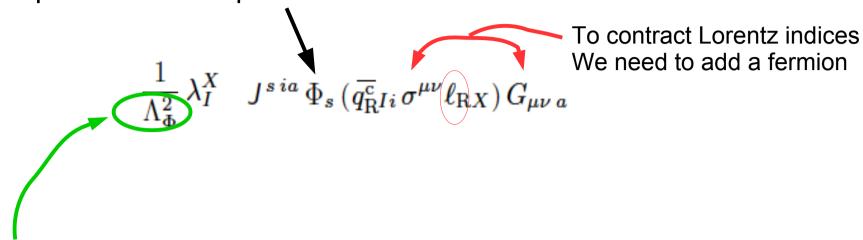
Comparing LHC pair production from gluon fusion to single production from the new operator



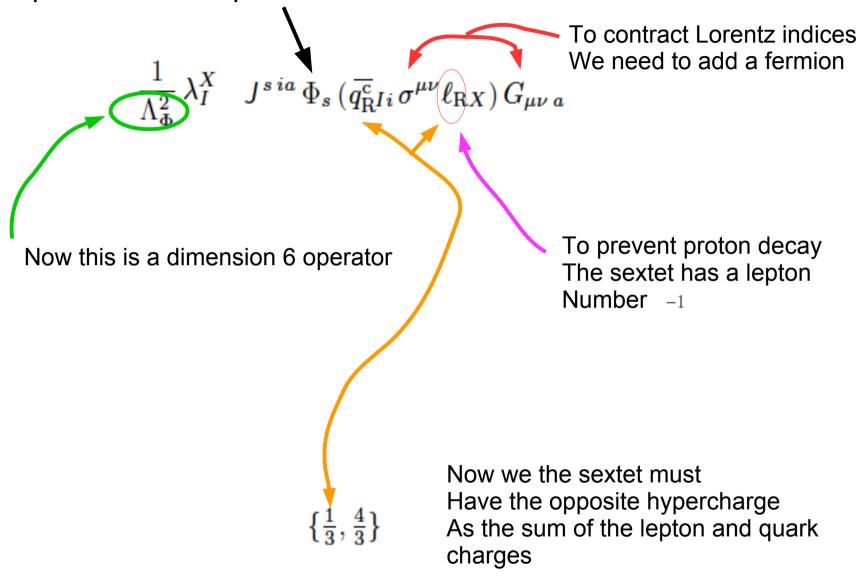


$$\frac{1}{\Lambda_{\Phi}^2} \, \lambda_I^X \quad J^{s \, ia} \, \Phi_s \left(\overline{q_{R}^c}_{Ii} \, \sigma^{\mu\nu} \ell_{RX} \right) G_{\mu\nu \, a}$$

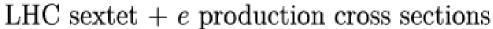


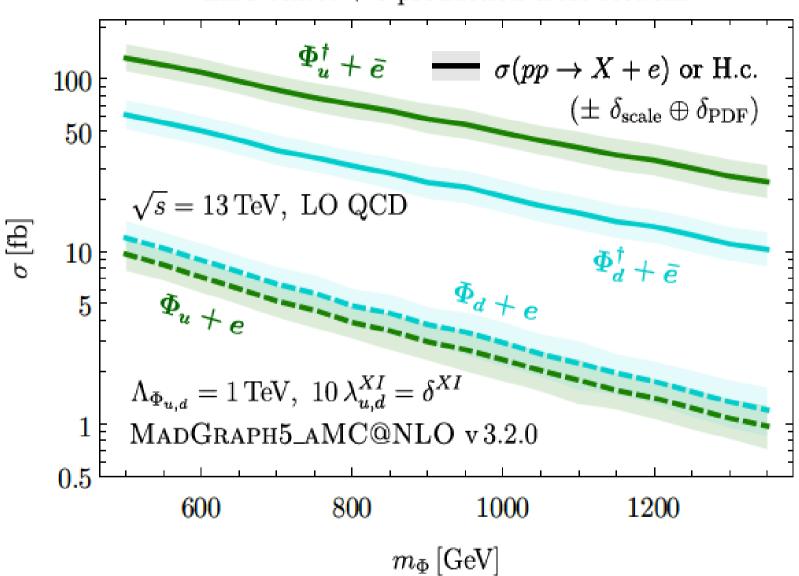


Now this is a dimension 6 operator

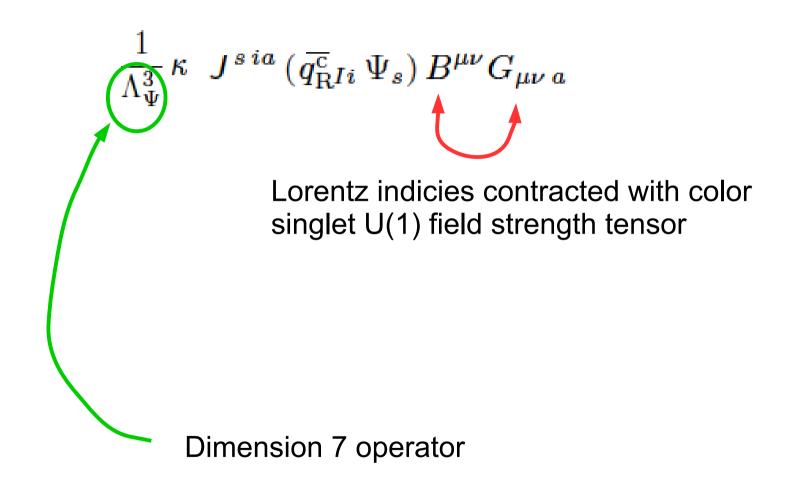


Now there is a process where a scalar sextet is produced in association with a lepton

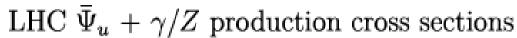


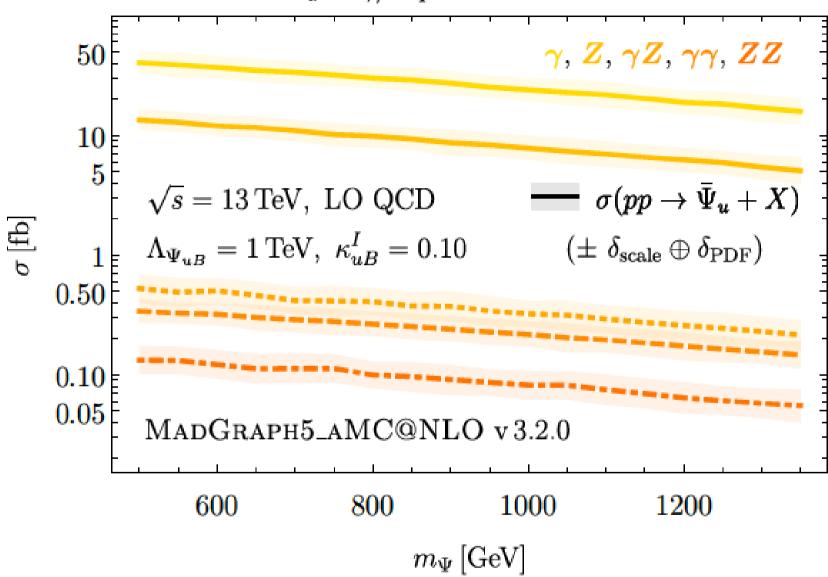


Higher Dimensional Operators



This operator allows the production of sextets in association with photon or Z





$oxed{3\otimes 3\otimes ar{6}}$		T	V		
3 8 3 8 0	Generic	L	Y		
		${\cal K}_s{}^{ij}\Phi^{\dagger s}(\overline{q^{ m c}_{ m R}}_{Ii}q_{{ m R}Jj})$	λ_{IJ}		(2 1 4)
		$K_s{}^{ij}\Phi^{\dagger s}(\overline{q^{\mathrm{c}}_{\mathrm{R}}}_{Ii}\sigma^{\mu u}q_{\mathrm{R}Jj})B_{\mu u}$	$\frac{1}{\Lambda_{\Phi}^2} \lambda_{IJ}$		$\{-\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\}$
	(/) * †	$\mathcal{K}_s{}^{ij}\Phi^{\dagger s}(\overline{Q}^{\mathrm{c}}_{\mathrm{L}^{Ii}}\mathrm{i} au^2Q_{\mathrm{L}^{Jj}})$	λ_{IJ}		
Scalar Φ_s	$(qq')\Phi^{\dagger}$	$K_s^{ij} \Phi^{\dagger s} (\overline{Q_{\mathrm{L}}^{\mathrm{c}}}_{Ii} \sigma^{\mu\nu} \mathrm{i} \tau^2 Q_{\mathrm{L}Jj}) B_{\mu\nu}$	$\frac{1}{\Lambda_{\Phi}^2} \lambda_{IJ}$	0	1
		$K_s^{\ ij} \Phi^{\dagger s} (\overline{Q^{\mathrm{c}}_{\mathrm{L}}}_{Ii} H H^\dagger Q_{\mathrm{L}Jj})$			3
		${\cal K}_s{}^{ij}\Phi^{\dagger s}(\overline{Q^{ m c}_{{ m L}Ii}}\sigma^{\mu u}t^A_{f 2}Q_{{ m L}Jj})W_{\mu uA}$	$rac{1}{\Lambda_{\Phi}^2}\lambda_{IJ}$		
	$(qq') H ^2\Phi^\dagger \qquad \qquad {\cal K}_s^{\ ij}\Phi^{\dagger s}(\overline{q^{\rm c}_{{ m R}}}{}_{Ii}q_{{ m R}Jj}) H ^2$				$\left\{-\frac{2}{3}, \frac{1}{3}, \frac{4}{3}\right\}$
		${\mathcal K_s}^{ij}(\overline{q^{\mathrm{c}}_{\mathrm{R}}}_{Ii}q_{\mathrm{R}Jj})(ar{\Psi}^s\ell_{\mathrm{R}X})$	$rac{1}{\Lambda_{\Psi}^2} \kappa_{IJ}^X$		$\left\{-\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}\right\}$
		${\cal K}_s{}^{ij}(\overline{q^{\rm c}_{{ m R}}}_{Ii}q_{{ m R}Jj})(ar\Psi^sH^\dagger L_{{ m L}X})$	1 _{rX}		
	(-1)(1,0)	$K_s^{\ ij} (\overline{q^{\mathrm{c}}_{\mathrm{R}}}_{Ii} \sigma^{\mu\nu} q_{\mathrm{R}Jj}) (\bar{\Psi}^s \sigma_{\mu\nu} H^\dagger L_{\mathrm{L}X})$	$\frac{1}{\Lambda_{\Psi}^3} \kappa_{IJ}^X$ $\frac{1}{\Lambda_{\Psi}^2} \kappa_{IJ}^X$	1	
	$(qq')(ar{\Psi}\ell)$	$\mathcal{K}_s^{\ ij}(\overline{Q^{\mathrm{c}}_{\mathrm{L}Ii}}\mathrm{i} au^2Q_{\mathrm{L}Jj})(ar{\Psi}^s\ell_{\mathrm{R}X})$			$\left\{-\frac{2}{3}, \frac{1}{3}, \frac{4}{3}\right\}$ $\left\{-\frac{2}{3}, \frac{1}{3}, \frac{4}{3}\right\}$ $\left\{-\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}\right\}$ $\left\{-\frac{2}{3}, \frac{1}{3}\right\}$ $\left\{-\frac{2}{3}, \frac{1}{3}\right\}$ $\left\{-\frac{2}{3}, \frac{1}{3}\right\}$ $\left\{-\frac{2}{3}, \frac{1}{3}\right\}$ $\left\{\frac{1}{3}, \frac{4}{3}\right\}$
D: T		${\cal K}_s{}^{ij}({\overline Q}^{ m c}_{{ m L}Ii}{ m i} au^2Q_{{ m L}Jj})({ar\Psi}^sH^\dagger L_{{ m L}X})$	$\frac{1}{\Lambda^3} \kappa^X_{IJ}$	1	
$Dirac \ \Psi_s$		${\cal K}_s{}^{ij}(\overline{Q}^{\rm c}_{{\rm L}^Ii}H\gamma^\mu q_{{\rm R}Jj})(\bar{\Psi}^s\gamma_\mu\ell_{{\rm R}X})$	Λ_{Ψ}^3		
	$(ar{\Psi}q)(q\ell)$	$\mathcal{K}_s{}^{ij}(\bar{\Psi}^s\sigma^{\mu\nu}q_{\mathrm RIi})(\overline{q_{\mathrm R}^{\mathrm c}}_{Jj}\sigma_{\mu\nu}\ell_{\mathrm RX})$	$rac{1}{\Lambda_{\Psi}^3} \kappa_{IJ}^X$		$\left\{-\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}\right\}$
	$(\Psi q)(q\ell)$	$\mathcal{K}_s{}^{ij} (\bar{\Psi}^s \gamma^\mu q_{\mathrm RIi}) (\overline{Q^{\mathrm{c}}_{\mathrm L}}_{Jj} H \gamma_\mu \ell_{\mathrm RX})$			$\left\{-\frac{2}{3},\frac{1}{3}\right\}$
	$(ar{\Psi}q)(ar{\ell}q)$	$\mathcal{K}_s{}^{ij} (\bar{\Psi}^s \gamma^\mu q_{\mathrm RIi}) (\bar{L}_{\mathrm LX} \gamma_\mu \mathrm{i} \tau^2 Q_{\mathrm LJj})$	$rac{1}{\Lambda_{\Psi}^2} \kappa_{IJ}^X$	-1	$\left\{\frac{1}{3}, \frac{4}{3}\right\}$
		$K_s{}^{ij} \left(\bar{\Psi}^s \gamma^\mu q_{\mathrm RIi} \right) \left(\bar{\ell}_{\mathrm RX} \gamma_\mu q_{\mathrm RJj} \right)$			$\left\{\frac{1}{3}, \frac{4}{3}, \frac{7}{3}\right\}$

We can build out
The operators for
each tensor product

	Scalar	r sextet Φ only	$Dirac$ sextet Ψ only		≥ 1 of each	
SU(3) _c invariant	d_{\min}	Structure	d_{\min}	Structure	$d_{ m min}$	Structure
	4^{\dagger}	$\Phi^\dagger\Phi$	5 [†]	$(ar{\Psi}\Psi)$		$(\bar{\Psi}\ell)\Phi$
${f 6}\otimes ar{f 6}$					4	$(\Psi\ell)\Phi^{\dagger}$
						$(\bar{\ell}\Psi)\Phi^{\dagger}$
	4	$(qq')\Phi^{\dagger}$		$(qq')(\bar{\Psi}\ell)$		
${f 3}\otimes{f 3}\otimes{f ar 6}$	6	$(qq') H ^2\Phi^\dagger$	6	$(ar{\Psi}q)(q\ell)$		
				$(\bar{\Psi}q)(\bar{\ell}q)$		
20600	c	$(q\ell)\Phi G$	5	$(q\Psi)G$		
$oldsymbol{3} \otimes oldsymbol{6} \otimes oldsymbol{8}$	6	$(ar{\ell}q)\Phi G$	7	$(q\Psi) H ^2G$		
	5 [†]	$\Phi\Phi\Phi$		$(\Psi\Psi)(\Psi\ell)$		$(\Psi\ell)\Phi\Phi$
$6\otimes6\otimes6$			6	$(\Psi\Psi)(ar\ell\Psi)$	5	$(\bar{\ell}\Psi)\Phi\Phi$
					6 [†]	$(\Psi\Psi)\Phi$
	6	$\Phi^\dagger \Phi G B$	5	$(\bar{\Psi}\Psi)G$		$(\bar{\Psi}\ell)\Phi G$
$oldsymbol{6}\otimesar{oldsymbol{6}}\otimesar{oldsymbol{8}}$			7	$(\bar{\Psi}\Psi) H ^2G$	6	$(\Psi\ell)\Phi^{\dagger}G$
						$(\bar{\ell}\Psi)\Phi^{\dagger}G$

Iterating tensor products

Observation. If there exist invariant combinations of n+1 and m+1 fields transforming in the direct product representations $\mathbf{r}_1 \otimes \cdots \otimes \mathbf{r}_n \otimes \mathbf{p}$ and $\mathbf{q}_1 \otimes \cdots \otimes \mathbf{q}_m \otimes \mathbf{p}$ of SU(3), then there exists an invariant combination of n+m fields in the reducible representation $\mathbf{r}_1 \otimes \cdots \otimes \mathbf{r}_n \otimes \mathbf{\bar{q}}_1 \otimes \cdots \otimes \mathbf{\bar{q}}_m$.

Constructing 4 field invariants

$$\mathbf{3} \otimes \mathbf{3} = \mathbf{\bar{3}_a} \oplus \mathbf{6_s},$$

$$3 \otimes \overline{3} = 1 \oplus 8$$

$$6 \otimes 3 = 8 \oplus 10$$
,

$$\mathbf{6}\otimes \mathbf{\bar{3}} = \mathbf{3} \oplus \mathbf{15},$$

$$\mathbf{6}\otimes\mathbf{6}=\mathbf{\bar{6}_{s}}\oplus\mathbf{15_{a}}\oplus\mathbf{15'_{s}},$$

$$\mathbf{6}\otimes\bar{\mathbf{6}}=\mathbf{1}\oplus\mathbf{8}\oplus\mathbf{27},$$

$$\mathbf{8}\otimes\mathbf{3}=\mathbf{3}\oplus\bar{\mathbf{6}}\oplus\mathbf{15},$$

$$\mathbf{8} \otimes \mathbf{\bar{6}} = \mathbf{3} \oplus \mathbf{\bar{6}} \oplus \mathbf{15} \oplus \mathbf{24},$$

$$\mathbf{8} \otimes \mathbf{8} = \mathbf{1}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{a}} \oplus \mathbf{10}_{\mathrm{a}} \oplus \mathbf{\overline{10}}_{\mathrm{a}} \oplus \mathbf{27}_{\mathrm{s}}$$

By iterating ensor products We construct new invariant

$$\mathbf{3}\otimes \mathbf{ar{3}} = \mathbf{8} = \mathbf{6}\otimes \mathbf{3}$$
 -

$${f 3}\otimes {f ar 3}\otimes {f ar 6}$$

With coefficient

$$[t^a_3]_j^{i}\,\bar{J}_{s\,ak}$$

Fundamentals contacted into 8

6-3-8 contraction

color-structure matters

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{\bar{3}_a}\oplus\mathbf{6_s},$$

$$\mathbf{3}\otimes \mathbf{\bar{3}} = \mathbf{1} \oplus \mathbf{8},$$

$$\mathbf{3} \otimes \mathbf{\bar{3}} = \mathbf{1} \oplus \mathbf{8},$$
 $\mathbf{6} \otimes \mathbf{3} = \mathbf{8} \oplus \mathbf{10},$

$$\mathbf{6}\otimes\mathbf{\bar{3}}=\mathbf{3}\oplus\mathbf{15},$$

$$\mathbf{6}\otimes\mathbf{6}=\mathbf{\bar{6}_{s}}\oplus\mathbf{15_{a}}\oplus\mathbf{15'_{s}},$$

$$\mathbf{6}\otimes\bar{\mathbf{6}}=\mathbf{1}\oplus\mathbf{8}\oplus\mathbf{27},$$

$$\mathbf{8}\otimes\mathbf{3}=\mathbf{3}\oplus\mathbf{\bar{6}}\oplus\mathbf{15},$$

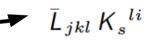
$$\mathbf{8} \otimes \mathbf{\bar{6}} = \mathbf{3} \oplus \mathbf{\bar{6}} \oplus \mathbf{15} \oplus \mathbf{24},$$

Iterating we get

$$\mathbf{6}\otimes \mathbf{ar{3}}\,\otimes \mathbf{3} = \mathbf{ar{3}}_{\mathrm{a}}$$

$${\bf 3}\otimes {\bf \bar 3}\otimes {\bf \bar 3}\otimes {\bf \bar 6}$$

With coefficient



Fundamentals contacted into 3

3-3-6bar contraction

$$\mathbf{8} \otimes \mathbf{8} = \mathbf{1}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{s}} \oplus \mathbf{8}_{\mathrm{a}} \oplus \mathbf{10}_{\mathrm{a}} \oplus \mathbf{\overline{10}}_{\mathrm{a}} \oplus \mathbf{27}_{\mathrm{s}}$$

All four field color invariants

Invariant		Clebsch-Gordan coefficients						
$oldsymbol{3} \otimes oldsymbol{3} \otimes oldsymbol{6} \otimes oldsymbol{6}$			$K_u^{ij}S^{ust}$					$\ni \left[\Pi_{3366}\right]^{ijst}$
$oldsymbol{3}\otimes oldsymbol{3}\otimes ar{oldsymbol{6}}\otimes oldsymbol{8}$	$L^{ijk}\bar{J}_{ska}$	$K_s^{ik}[t^a_{3}]_k^{j}$	$K_r^{ij}[t_6^a]_s^r$			$Q^{qi}_{s}V_{q}^{ja}$		$\ni \left[\Pi_{\mathbf{33\bar{6}8}}\right]^{ij}{}_{s}{}^{a}$
${f 3}\otimes {f ar 3}\otimes {f ar 3}\otimes {f ar 6}$	$\bar{L}_{jkl} K_s^{li}$			$[t^a_{3}]_j^{\ i} ar{J}_{sak}$				$\ni \left[\Pi_{\mathbf{3\bar{3}\bar{3}\bar{6}}}\right]^i{}_{jks}$
$oldsymbol{3}\otimesar{oldsymbol{3}}\otimesoldsymbol{6}\otimesar{oldsymbol{6}}$	$\delta_j^{\ i}\delta_t^{\ s}$			$[t^a_{3}]_j{}^i[t^a_{6}]_t{}^s$				$\ni \left[\Pi_{\mathbf{3\bar{3}6\bar{6}}}\right]_{j}^{i}{}_{t}^{s}$
$oldsymbol{3} \otimes oldsymbol{6} \otimes oldsymbol{6} \otimes oldsymbol{ar{6}}$				$J^{sia}[t^a_{6}]_u^t$		$Q^{qi}_{u}W_{q}^{st}$		$\ni \left[\Pi_{\mathbf{366\bar{6}}}\right]^{ist}{}_{u}$
$oldsymbol{3} \otimes oldsymbol{6} \otimes oldsymbol{8} \otimes oldsymbol{8}$	$[t_3^a]_j^{\ i}J^{sjb}$		$J^{tia}[t^b_{\bf 6}]_t^{\ s}$	$J^{sic}\{f,d\}^{abc}$	$E_x^{is}G^{xab}$	$V_q^{ia}X^{qsb}$		$\ni [\Pi_{3688}]^{isab}$
$oldsymbol{3}\otimesar{f 6}\otimesar{f 6}\otimes{f 8}$	$K_s^{ij} \bar{J}_{sai}$		$J^{sia}\bar{S}_{stu}$					$\ni \left[\Pi_{\mathbf{3\bar{6}\bar{6}8}}\right]^{i}{}_{st} \overset{a}{}$
$6\otimes6\otimesar{6}\otimesar{6}$	$\delta_u^{\ s}\delta_v^{\ t}$			$[t^a_{6}]_u^s[t^a_{6}]_v^t$				$\ni \left[\Pi_{\mathbf{66\bar{6}\bar{6}}}\right]^{st}{}_{uv}$
$6\otimes6\otimes6\otimes8$				$S^{str}[t_6^a]_r^u$		$W_q^{st} X^{qua}$		$\ni \left[\Pi_{6668}\right]^{stu\;a}$
$6\otimes \mathbf{ar{6}}\otimes 8\otimes 8$	$\delta_t{}^s\delta_b{}^a$			$[t_6^c]_t^s[t_8^c]_b^a$			$F^n_{\ t}{}^sH^{nab}$	$\ni \left[\Pi_{\mathbf{6\bar{6}88}}\right]_{t}^{s}{}_{b}^{a}$

	$Scalar$ sextet Φ only		Dirac	sextet Ψ only	2	≥ 1 of each
SU(3) _c invariant	d_{\min}	Structure	d_{\min}	Structure	d_{\min}	Structure
2 - 2 - 2 - 2	5	$(qq')\Phi\Phi$		$(qq')(\Psi\Psi)$		$(qq')(\Psi\ell)\Phi$
$egin{array}{c} 3\otimes3\otimes6\otimes6 \end{array}$	7	$(qq')\Phi H ^2\Phi$	6	$(q\Psi)(q'\Psi)$	7	$(q\ell)(q'\Psi)\Phi$
$oldsymbol{3} \otimes oldsymbol{3} \otimes ar{oldsymbol{6}} \otimes oldsymbol{8}$	6	$(qq')\Phi^{\dagger}G$				
0 - 0 - 0 - 0		$(\bar{q}q')(\bar{q}''\ell)\Phi$		$(ar q q')(ar q''\Psi)$		
$3\otimes \mathbf{ar{3}}\otimes \mathbf{ar{3}}\otimes \mathbf{ar{6}}$	7	$(qq')^{\dagger}(q''\ell)\Phi$	6	$(qq')^{\dagger}(\bar{q}''\Psi)$		
	5	$(\bar{q}q')\Phi^{\dagger}\Phi$		$(ar q q')(ar \Psi \Psi)$	- 7*	$(\bar{q}q')(\bar{\Psi}\ell)\Phi$
$3\otimes \mathbf{ar{3}}\otimes 6\otimes \mathbf{ar{6}}$	7	$(\bar{q}q')\Phi^{\dagger} H ^2\Phi$	- 6	$(ar q\Psi)(ar\Psi q')$		$(\bar{q}\Psi)(q'\ell)\Phi^{\dagger}$
		$(q\ell) \Phi ^2\Phi$	- 6	$(q\Psi)(ar{\Psi}\Psi)$	- 5	$(q\Psi)\Phi^{\dagger}\Phi$
	6	$(ar{\ell}q) \Phi ^2\Phi$		$(ar{\Psi}q)(\Psi\Psi)$		$(ar{\Psi}q)\Phi\Phi$
$egin{array}{c} 3\otimes6\otimes6\otimesar{6} \ \end{array}$					7*	$(q\Psi)(\Psi\ell)\Phi^{\dagger}$
					,	$(q\ell)(\bar{\Psi}\Psi)\Phi$
$3\otimes6\otimes8\otimes8$			7	$(q\Psi)GG$		
2 0 6 0 6 0 0	7	$(q\ell)\Phi^{\dagger}\Phi^{\dagger}G$			6	$(\bar{\Psi}q)\Phi^{\dagger}G$
$3\otimes \mathbf{ar{6}}\otimes \mathbf{ar{6}}\otimes 8$	7	$(\bar{\ell}q)\Phi^{\dagger}\Phi^{\dagger}G$				
	6 [†]	$ \Phi ^4$				$(\bar{\Psi}\ell) \Phi ^2\Phi$
					6	$(\Psi \ell) \Phi ^2 \Phi^{\dagger}$
$6\otimes6\otimesar{6}\otimesar{6}$						$(\bar{\ell}\Psi) \Phi ^2\Phi^\dagger$
					7	$(\bar{\Psi}\Psi) \Phi ^2 H ^2$
	7	$\Phi\Phi\Phi GB$			6	$(\Psi\Psi)\Phi G$
$6\otimes6\otimes6\otimes8$					7	$(\Psi\ell)\Phi\Phi G$
						$(ar{\ell}\Psi)\Phi\Phi G$
$6\otimes ar{6}\otimes 8\otimes 8$	6	$ \Phi ^2 GG$	7	$(\bar{\Psi}\Psi)GG$		

Operators built from 4 field color-invariants

		Scalar sextet Φ only		Dirac	$Dirac$ sextet Ψ only		≥ 1 of each	
	SU(3) _c invariant	d_{min}	Structure	d_{min}	Structure	d_{min}	Structure	
	$egin{array}{c} 3\otimes3\otimes6\otimes6 \end{array}$	5	$(qq')\Phi\Phi$		$(qq')(\Psi\Psi)$	- 7	$(qq')(\Psi\ell)\Phi$	
		7	$(qq')\Phi H ^2\Phi$	6	$(q\Psi)(q'\Psi)$		$(q\ell)(q'\Psi)\Phi$	
($oxed{3\otimes 3\otimes ar{6}\otimes 8}$	6	$(qq')\Phi^{\dagger}G$					
	0 - 5 - 5 - 5	_	$(\bar{q}q')(\bar{q}''\ell)\Phi$		$(ar q q')(ar q''\Psi)$			
	$3\otimes \mathbf{ar{3}}\otimes \mathbf{ar{3}}\otimes \mathbf{ar{6}}$	7	$(qq')^{\dagger}(q''\ell)\Phi$	- 6	$(qq')^{\dagger}(\bar{q}''\Psi)$			
	2 - 3 - 2 - 3	5	$(\bar{q}q')\Phi^{\dagger}\Phi$		$(ar q q')(ar \Psi \Psi)$	7*	$(ar q q')(ar\Psi\ell)\Phi$	
	$3\otimes \mathbf{ar{3}}\otimes 6\otimes \mathbf{ar{6}}$	7	$(\bar{q}q')\Phi^{\dagger} H ^2\Phi$	6	$(ar q\Psi)(ar\Psi q')$		$(\bar{q}\Psi)(q'\ell)\Phi^{\dagger}$	
			$(q\ell) \Phi ^2\Phi$	- 6	$(q\Psi)(ar{\Psi}\Psi)$	- 5	$(q\Psi)\Phi^\dagger\Phi$	
		6	$(ar{\ell}q) \Phi ^2\Phi$		$(ar{\Psi}q)(\Psi\Psi)$		$(ar{\Psi}q)\Phi\Phi$	
	$3\otimes6\otimes6\otimesar{6}$					7*	$(q\Psi)(\Psi\ell)\Phi^{\dagger}$	
						1	$(q\ell)(\bar{\Psi}\Psi)\Phi$	
	$3\otimes6\otimes8\otimes8$			7	$(q\Psi)GG$			
	200000	7	$(q\ell)\Phi^{\dagger}\Phi^{\dagger}G$			6	$(\bar{\Psi}q)\Phi^{\dagger}G$	
	$3\otimes ar{6}\otimes ar{6}\otimes 8$		$(\bar{\ell}q)\Phi^\dagger\Phi^\dagger G$					
		6 [†]	$ \Phi ^4$				$(\bar{\Psi}\ell) \Phi ^2\Phi$	
	$6\otimes6\otimesar{6}\otimesar{6}$					6	$(\Psi \ell) \Phi ^2 \Phi^\dagger$	
	0 8 0 8 0 8 0						$(\bar{\ell}\Psi) \Phi ^2\Phi^\dagger$	
						7	$(\bar{\Psi}\Psi) \Phi ^2 H ^2$	
		7	$\Phi\Phi\Phi GB$			6	$(\Psi\Psi)\Phi G$	
6	$6\otimes6\otimes6\otimes8$					7	$(\Psi\ell)\Phi\Phi G$	
						·	$(ar{\ell}\Psi)\Phi\Phi G$	
	$6\otimes \mathbf{ar{6}}\otimes 8\otimes 8$	6	$ \Phi ^2 GG$	7	$(\bar{\Psi}\Psi)GG$			

More interesting processes

Associated production with quark From quark-gluon fusion

Three body decay of sextet

Iterate again

$$\begin{array}{c} 3\otimes 3=\bar{3}_a\oplus 6_s,\\ 3\otimes \bar{3}=1\oplus 8,\\ 6\otimes \bar{3}=8\oplus 10,\\ 6\otimes \bar{3}=3\oplus 15,\\ 6\otimes \bar{6}=\bar{6}_s\oplus 15_a\oplus 15_s', \end{array} \qquad \begin{array}{c} 6\otimes \bar{3}\\ 6\otimes \bar{3}=\bar{3}_a \end{array}$$
 Five field invariant
$$\begin{array}{c} 6\otimes \bar{6}=\bar{6}_s\oplus 15_a\oplus 15_s',\\ 6\otimes \bar{6}=1\oplus 8\oplus 27,\\ 8\otimes \bar{6}=1\oplus 8\oplus 27,\\ 8\otimes \bar{6}=3\oplus \bar{6}\oplus 15,\\ 8\otimes \bar{6}=3\oplus \bar{6}\oplus 15,\\ 8\otimes \bar{6}=3\oplus \bar{6}\oplus 15\oplus 24,\\ 8\otimes 8=1_s\oplus 8_s\oplus 8_a\oplus 10_a\oplus \bar{10}_a\oplus 27_s \end{array}$$

	Scal	ar sextet Φ only	≥	1 of each
SU(3) _c invariant	d_{\min}	structure Structure		Structure
$oldsymbol{3} \otimes oldsymbol{3} \otimes oldsymbol{3} \otimes oldsymbol{3} \otimes oldsymbol{6}$	7	$(qq')(q''q''')\Phi$		
$egin{array}{c} 3\otimes3\otimesar{3}\otimesar{6} \end{array}$	7	$(qq')(\bar{q}''q''')\Phi^{\dagger}$		
202060606	6	$(qq') \Phi ^2\Phi^\dagger$	7*	$(qq')(\bar{\Psi}\Psi)\Phi^{\dagger}$
$egin{array}{c} 3\otimes3\otimes6\otimesar{6}\otimesar{6} \end{array}$] '	$(\bar{\Psi}q)(q'\Psi)\Phi^{\dagger}$
202060606	6	$(ar{q}q')\Phi\Phi\Phi$	7	$(\bar{q}q')(\Psi\Psi)\Phi$
$oldsymbol{3}\otimesar{oldsymbol{3}}\otimesoldsymbol{6}\otimesoldsymbol{6}\otimesoldsymbol{6}$] '	$(\bar{q}\Psi)(q'\Psi)\Phi$
$oldsymbol{3}\otimesar{oldsymbol{3}}\otimesoldsymbol{6}\otimesar{oldsymbol{6}}\otimesoldsymbol{8}$	7	$(\bar q q') \Phi ^2 G$		
2000000000	-	$(q\ell)\Phi\Phi\Phi\Phi$		
$3\otimes 6\otimes 6\otimes 6\otimes 6$	7	$(ar{\ell}q)\Phi\Phi\Phi\Phi$		
	7	$(q\ell) \Phi ^2\Phi^\dagger\Phi^\dagger$		
$egin{array}{c} 3\otimes6\otimesar{6}\otimesar{6}\otimesar{6} \end{array}$,	$(\bar{\ell}q) \Phi ^2\Phi^\dagger\Phi^\dagger$		
$6\otimes6\otimesar{6}\otimesar{6}\otimes8$			7	$(\bar{\Psi}\Psi)\Phi^{\dagger}\Phi G$
$6\otimes6\otimes6\otimes8\otimes8$	7	$\Phi\Phi\Phi GG$		
$oldsymbol{6}\otimesar{oldsymbol{6}}\otimesar{oldsymbol{6}}\otimesar{oldsymbol{6}}\otimesar{oldsymbol{6}}$	7	$\Phi\Phi^\dagger\Phi^\dagger\Phi^\dagger\Phi^\dagger H ^2$		

Conclusion and Future Directions

Systematic exploration of color invariants leads to a complete catalogue of BSM operators with new and interesting collider phenomenology

Future Directions Include

- In depth phenomenological studies for sextet models including future colliders
- Building out UV completions
- Completing catalogue for other representations, including fields with nontrivial representations underSU(3)xSU(2)